BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37657610)

  • 21. Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid.
    Ishikawa A; Miura T
    Evol Dev; 2009; 11(6):680-8. PubMed ID: 19878289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Winged Pea Aphids Can Modify Phototaxis in Different Development Stages to Assist Their Host Distribution.
    Zhang Y; Wang XX; Jing X; Tian HG; Liu TX
    Front Physiol; 2016; 7():307. PubMed ID: 27531980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wing Plasticity Is Associated with Growth and Energy Metabolism in Two Color Morphs of the Pea Aphid.
    Cao H; Wang X; Wang J; Lu Z; Liu T
    Insects; 2024 Apr; 15(4):. PubMed ID: 38667409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism.
    Braendle C; Friebe I; Caillaud MC; Stern DL
    Proc Biol Sci; 2005 Mar; 272(1563):657-64. PubMed ID: 15817441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda.
    Ishikawa A; Gotoh H; Abe T; Miura T
    J Insect Physiol; 2013 Apr; 59(4):444-9. PubMed ID: 23434762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae.
    CastaƱeda LE; Figueroa CC; Bacigalupe LD; Nespolo RF
    J Insect Physiol; 2010 Dec; 56(12):1920-4. PubMed ID: 20801126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera.
    Yu JL; An ZF; Liu XD
    BMC Mol Biol; 2014 Sep; 15():20. PubMed ID: 25266639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aphid polyphenisms: trans-generational developmental regulation through viviparity.
    Ogawa K; Miura T
    Front Physiol; 2014; 5():1. PubMed ID: 24478714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The genomewide transcriptional response underlying the pea aphid wing polyphenism.
    Vellichirammal NN; Madayiputhiya N; Brisson JA
    Mol Ecol; 2016 Sep; 25(17):4146-60. PubMed ID: 27393739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences.
    Grantham ME; Shingleton AW; Dudley E; Brisson JA
    Evol Dev; 2020 May; 22(3):257-268. PubMed ID: 31682317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data.
    Zhang RJ; Chen J; Jiang LY; Qiao GX
    Sci Rep; 2019 Mar; 9(1):4754. PubMed ID: 30894649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the wing polyphenic response of pea aphids (
    Purandare SR; Tenhumberg B; Brisson JA
    Ecol Entomol; 2014 Apr; 39(2):263-266. PubMed ID: 24791058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Differential Proteins in Two Wing-Type Females of Sogatella furcifera (Hemiptera: Delphacidae).
    Liang ZQ; Song SY; Liang SK; Wang FH
    J Insect Sci; 2016; 16(1):. PubMed ID: 27044649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Mechanisms of Wing Polymorphism in Insects.
    Zhang CX; Brisson JA; Xu HJ
    Annu Rev Entomol; 2019 Jan; 64():297-314. PubMed ID: 30312555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host races of the pea aphid Acyrthosiphon pisum differ in male wing phenotypes.
    Frantz A; Plantegenest M; Simon JC
    Bull Entomol Res; 2010 Feb; 100(1):59-66. PubMed ID: 19323853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions.
    Hatano E; Kunert G; Weisser WW
    PLoS One; 2010 Jun; 5(6):e11188. PubMed ID: 20585639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses.
    Guo H; Zhang Y; Li B; Li C; Shi Q; Zhu-Salzman K; Ge F; Sun Y
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2222040120. PubMed ID: 36976769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda.
    Ishikawa A; Ishikawa Y; Okada Y; Miyazaki S; Miyakawa H; Koshikawa S; Brisson JA; Miura T
    J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):194-203. PubMed ID: 22514053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae).
    Kunert G; Schmoock-Ortlepp K; Reissmann U; Creutzburg S; Weisser WW
    Bull Entomol Res; 2008 Feb; 98(1):59-62. PubMed ID: 18076776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pea aphid winged and wingless males exhibit reproductive, gene expression, and lipid metabolism differences.
    Saleh Ziabari O; Zhong Q; Purandare SR; Reiter J; Zera AJ; Brisson JA
    Curr Res Insect Sci; 2022; 2():100039. PubMed ID: 36003264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.