These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37657703)
1. Machine-learning-assisted prediction and optimized kinetic modelling of residual chlorine decay for enhanced water quality management. Jafari I; Luo R; Lim FY; Hui NS; Jiangyong H Chemosphere; 2023 Nov; 341():140011. PubMed ID: 37657703 [TBL] [Abstract][Full Text] [Related]
2. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. Li RA; McDonald JA; Sathasivan A; Khan SJ Water Res; 2019 Apr; 153():335-348. PubMed ID: 30743084 [TBL] [Abstract][Full Text] [Related]
3. Chlorine Concentration Modelling and Supervision in Water Distribution Systems. Pérez R; Martínez-Torrents A; Martínez M; Grau S; Vinardell L; Tomàs R; Martínez-Lladó X; Jubany I Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898083 [TBL] [Abstract][Full Text] [Related]
4. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems. Fisher I; Kastl G; Sathasivan A Water Res; 2017 Nov; 125():427-437. PubMed ID: 28892770 [TBL] [Abstract][Full Text] [Related]
5. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter. Hua P; Vasyukova E; Uhl W Water Res; 2015 May; 75():109-22. PubMed ID: 25765169 [TBL] [Abstract][Full Text] [Related]
6. Evaluation and application of chlorine decay models for humanitarian emergency water supply contexts. Wu H; Dorea CC Environ Technol; 2022 Sep; 43(21):3221-3230. PubMed ID: 33880970 [TBL] [Abstract][Full Text] [Related]
7. The insightful water quality analysis and predictive model establishment via machine learning in dual-source drinking water distribution system. Li H; Zhou B; Xu X; Huo R; Zhou T; Dong X; Ye C; Li T; Xie L; Pang W Environ Res; 2024 Jun; 250():118474. PubMed ID: 38368920 [TBL] [Abstract][Full Text] [Related]
8. The mixed-order chlorine decay model with an analytical solution and corresponding trihalomethane generation model in drinking water. Feng W; Ma W; Zhao Q; Li F; Zhong D; Deng L; Zhu Y; Li Z; Zhou Z; Wu R; Liu L; Ma J Environ Pollut; 2023 Oct; 335():122227. PubMed ID: 37479166 [TBL] [Abstract][Full Text] [Related]
9. Experimental appraisal and numerical modelling of chlorine demand and decay in a typical drinking water distribution network in South Africa. Maphanga D; Moropeng ML; Masindi V; Akinwekomi V; Foteinis S Ecotoxicol Environ Saf; 2024 Nov; 286():117153. PubMed ID: 39395375 [TBL] [Abstract][Full Text] [Related]
10. A multivariate Bayesian network analysis of water quality factors influencing trihalomethanes formation in drinking water distribution systems. Li RA; McDonald JA; Sathasivan A; Khan SJ Water Res; 2021 Feb; 190():116712. PubMed ID: 33310438 [TBL] [Abstract][Full Text] [Related]
11. Locally enhanced mixed-order model for chloramine decay in drinking water disinfection. Feng W; Ma W; Zhong D Water Res; 2024 May; 254():121409. PubMed ID: 38461602 [TBL] [Abstract][Full Text] [Related]
12. Model for halo-acetic acids formation in bulk water of water supply systems. Premarathna SM; Kastl G; Fisher I; Sathasivan A Sci Total Environ; 2023 Jan; 857(Pt 1):159267. PubMed ID: 36208766 [TBL] [Abstract][Full Text] [Related]
13. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution. Zhao Y; Yang YJ; Shao Y; Neal J; Zhang T Water Res; 2018 Sep; 141():32-45. PubMed ID: 29753975 [TBL] [Abstract][Full Text] [Related]
14. Water quality modeling in the dead end sections of drinking water distribution networks. Abokifa AA; Yang YJ; Lo CS; Biswas P Water Res; 2016 Feb; 89():107-17. PubMed ID: 26641015 [TBL] [Abstract][Full Text] [Related]
15. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems. Fisher I; Kastl G; Sathasivan A Water Res; 2012 Jun; 46(10):3293-303. PubMed ID: 22560619 [TBL] [Abstract][Full Text] [Related]
16. Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks. Maheshwari A; Abokifa A; Gudi RD; Biswas P J Environ Manage; 2020 Dec; 276():111186. PubMed ID: 32906070 [TBL] [Abstract][Full Text] [Related]
17. Trihalomethane species model for drinking water supply systems. Sathasivan A; Kastl G; Korotta-Gamage S; Gunasekera V Water Res; 2020 Oct; 184():116189. PubMed ID: 32717495 [TBL] [Abstract][Full Text] [Related]
18. Using Bayesian statistics to estimate the coefficients of a two- component second-order chlorine bulk decay model for a water distribution system. Huang JJ; McBean EA Water Res; 2007 Jan; 41(2):287-94. PubMed ID: 17169396 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Optimization of Booster Disinfection Scheduling in Water Distribution Networks. Moeini M; Sela L; Taha AF; Abokifa AA Water Res; 2023 Aug; 242():120117. PubMed ID: 37393806 [TBL] [Abstract][Full Text] [Related]
20. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica. Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]