These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37658079)

  • 1. Extracting and visualizing hidden activations and computational graphs of PyTorch models with TorchLens.
    Taylor J; Kriegeskorte N
    Sci Rep; 2023 Sep; 13(1):14375. PubMed ID: 37658079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TorchLens: A Python package for extracting and visualizing hidden activations of PyTorch models.
    Taylor J; Kriegeskorte N
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains.
    Chen X; Zhou M; Gong Z; Xu W; Liu X; Huang T; Zhen Z; Liu J
    Front Comput Neurosci; 2020; 14():580632. PubMed ID: 33328946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks.
    Muttenthaler L; Hebart MN
    Front Neuroinform; 2021; 15():679838. PubMed ID: 34630062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Programs Biomed; 2023 Aug; 238():107616. PubMed ID: 37230048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MotorNet, a Python toolbox for controlling differentiable biomechanical effectors with artificial neural networks.
    Codol O; Michaels JA; Kashefi M; Pruszynski JA; Gribble PL
    Elife; 2024 Jul; 12():. PubMed ID: 39078880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual differences among deep neural network models.
    Mehrer J; Spoerer CJ; Kriegeskorte N; Kietzmann TC
    Nat Commun; 2020 Nov; 11(1):5725. PubMed ID: 33184286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.
    Pérez-García F; Sparks R; Ourselin S
    Comput Methods Programs Biomed; 2021 Sep; 208():106236. PubMed ID: 34311413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PyTorch-FEA: Autograd-enabled Finite Element Analysis Methods with Applications for Biomechanical Analysis of Human Aorta.
    Liang L; Liu M; Elefteriades J; Sun W
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Human Cognition Through Computational Modeling.
    Hsiao JH
    Top Cogn Sci; 2024 Jul; 16(3):349-376. PubMed ID: 38781432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Machine-Learning Frameworks for the Elaboration of Feed-Forward Neural Networks by Varying the Complexity of Impedimetric Datasets Synthesized Using Eddy Current Sensors for the Characterization of Bi-Metallic Coins.
    Munjal R; Arif S; Wendler F; Kanoun O
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing hidden patterns in deep neural network feature space continuum via manifold learning.
    Islam MT; Zhou Z; Ren H; Khuzani MB; Kapp D; Zou J; Tian L; Liao JC; Xing L
    Nat Commun; 2023 Dec; 14(1):8506. PubMed ID: 38129376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving robustness of a deep learning-based lung-nodule classification model of CT images with respect to image noise.
    Gao Y; Xiong J; Shen C; Jia X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34818638
    [No Abstract]   [Full Text] [Related]  

  • 19. A walk in the black-box: 3D visualization of large neural networks in virtual reality.
    Linse C; Alshazly H; Martinetz T
    Neural Comput Appl; 2022; 34(23):21237-21252. PubMed ID: 35996678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Neural Networks for Neuroscientists: A Primer.
    Yang GR; Wang XJ
    Neuron; 2020 Sep; 107(6):1048-1070. PubMed ID: 32970997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.