These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37658079)

  • 21. Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network.
    Matsui T; Taki M; Pham TQ; Chikazoe J; Jimura K
    Front Neuroinform; 2021; 15():802938. PubMed ID: 35369003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SimpleMind: An open-source software environment that adds thinking to deep neural networks.
    Choi Y; Wahi-Anwar MW; Brown MS
    PLoS One; 2023; 18(4):e0283587. PubMed ID: 37053159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.
    Deng L; Jiao P; Pei J; Wu Z; Li G
    Neural Netw; 2018 Apr; 100():49-58. PubMed ID: 29471195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracting and inserting knowledge into stacked denoising auto-encoders.
    Yu J; Liu G
    Neural Netw; 2021 May; 137():31-42. PubMed ID: 33545610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL.
    Zimmer L; Lindauer M; Hutter F
    IEEE Trans Pattern Anal Mach Intell; 2021 Sep; 43(9):3079-3090. PubMed ID: 33750687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards Efficient Visual Simplification of Computational Graphs in Deep Neural Networks.
    Pan R; Wang Z; Wei Y; Gao H; Ou G; Cao CC; Xu J; Xu T; Chen W
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3359-3373. PubMed ID: 37015673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density regression and uncertainty quantification with Bayesian deep noise neural networks.
    Zhang D; Liu T; Kang J
    Stat; 2023; 12(1):. PubMed ID: 38957733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TorchDIVA: An extensible computational model of speech production built on an open-source machine learning library.
    Kinahan SP; Liss JM; Berisha V
    PLoS One; 2023; 18(2):e0281306. PubMed ID: 36800358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
    Nonaka S; Majima K; Aoki SC; Kamitani Y
    iScience; 2021 Sep; 24(9):103013. PubMed ID: 34522856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The functional neuroanatomy of face perception: from brain measurements to deep neural networks.
    Grill-Spector K; Weiner KS; Gomez J; Stigliani A; Natu VS
    Interface Focus; 2018 Aug; 8(4):20180013. PubMed ID: 29951193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual Genealogy of Deep Neural Networks.
    Wang Q; Yuan J; Chen S; Su H; Qu H; Liu S
    IEEE Trans Vis Comput Graph; 2020 Nov; 26(11):3340-3352. PubMed ID: 31180859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution.
    Xu Y; Sabin G; Raje S; Sukumaran-Rajam A; Rountev A; Sadayappan P
    Compil Constr; 2022 Mar; 2022():104-116. PubMed ID: 35876769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EPViz: A flexible and lightweight visualizer to facilitate predictive modeling for multi-channel EEG.
    Currey D; Craley J; Hsu D; Ahmed R; Venkataraman A
    PLoS One; 2023; 18(2):e0282268. PubMed ID: 36848345
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.