BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37658963)

  • 21. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.
    MacPhaul E; Zhou L; Mooney SJ; Azrael D; Bowen A; Rowhani-Rahbar A; Yenduri R; Barber C; Goralnick E; Miller M
    JAMA Netw Open; 2023 Apr; 6(4):e235870. PubMed ID: 37022685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments.
    Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q
    Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non-Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study.
    Hu D; Li S; Zhang H; Wu N; Lu X
    JMIR Med Inform; 2022 Apr; 10(4):e35475. PubMed ID: 35468085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing.
    Zhong QY; Karlson EW; Gelaye B; Finan S; Avillach P; Smoller JW; Cai T; Williams MA
    BMC Med Inform Decis Mak; 2018 May; 18(1):30. PubMed ID: 29843698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using natural language processing for automated classification of disease and to identify misclassified ICD codes in cardiac disease.
    Falter M; Godderis D; Scherrenberg M; Kizilkilic SE; Xu L; Mertens M; Jansen J; Legroux P; Kindermans H; Sinnaeve P; Neven F; Dendale P
    Eur Heart J Digit Health; 2024 May; 5(3):229-234. PubMed ID: 38774372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ascertaining Framingham heart failure phenotype from inpatient electronic health record data using natural language processing: a multicentre Atherosclerosis Risk in Communities (ARIC) validation study.
    Moore CR; Jain S; Haas S; Yadav H; Whitsel E; Rosamand W; Heiss G; Kucharska-Newton AM
    BMJ Open; 2021 Jun; 11(6):e047356. PubMed ID: 34127492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models.
    Hua Y; Blackley SV; Shinn AK; Skinner JP; Moran LV; Zhou L
    medRxiv; 2024 Mar; ():. PubMed ID: 38562701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models.
    Hua Y; Blackley S; Shinn A; Skinner J; Moran L; Zhou L
    Res Sq; 2024 Mar; ():. PubMed ID: 38562731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural language processing for automated detection of incidental durotomy.
    Karhade AV; Bongers MER; Groot OQ; Kazarian ER; Cha TD; Fogel HA; Hershman SH; Tobert DG; Schoenfeld AJ; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2020 May; 20(5):695-700. PubMed ID: 31877390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining Multiple Sclerosis Phenotype from Electronic Medical Records.
    Nelson RE; Butler J; LaFleur J; Knippenberg K; C Kamauu AW; DuVall SL
    J Manag Care Spec Pharm; 2016 Dec; 22(12):1377-1382. PubMed ID: 27882837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data.
    Yoshida K; Cai T; Bessette LG; Kim E; Lee SB; Zabotka LE; Sun A; Mastrorilli JM; Oduol TA; Liu J; Solomon DH; Kim SC; Desai RJ; Liao KP
    Pharmacoepidemiol Drug Saf; 2024 Jan; 33(1):e5684. PubMed ID: 37654015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Web-based Real-Time Case Finding for the Population Health Management of Patients With Diabetes Mellitus: A Prospective Validation of the Natural Language Processing-Based Algorithm With Statewide Electronic Medical Records.
    Zheng L; Wang Y; Hao S; Shin AY; Jin B; Ngo AD; Jackson-Browne MS; Feller DJ; Fu T; Zhang K; Zhou X; Zhu C; Dai D; Yu Y; Zheng G; Li YM; McElhinney DB; Culver DS; Alfreds ST; Stearns F; Sylvester KG; Widen E; Ling XB
    JMIR Med Inform; 2016 Nov; 4(4):e37. PubMed ID: 27836816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial.
    Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA
    J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying Patients With Delirium Based on Unstructured Clinical Notes: Observational Study.
    Ge W; Alabsi H; Jain A; Ye E; Sun H; Fernandes M; Magdamo C; Tesh RA; Collens SI; Newhouse A; Mvr Moura L; Zafar S; Hsu J; Akeju O; Robbins GK; Mukerji SS; Das S; Westover MB
    JMIR Form Res; 2022 Jun; 6(6):e33834. PubMed ID: 35749214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.