These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37659103)
1. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes. Betzler BK; Chee EYL; He F; Lim CC; Ho J; Hamzah H; Tan NC; Liew G; McKay GJ; Hogg RE; Young IS; Cheng CY; Lim SC; Lee AY; Wong TY; Lee ML; Hsu W; Tan GSW; Sabanayagam C J Am Med Inform Assoc; 2023 Nov; 30(12):1904-1914. PubMed ID: 37659103 [TBL] [Abstract][Full Text] [Related]
2. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Sabanayagam C; Xu D; Ting DSW; Nusinovici S; Banu R; Hamzah H; Lim C; Tham YC; Cheung CY; Tai ES; Wang YX; Jonas JB; Cheng CY; Lee ML; Hsu W; Wong TY Lancet Digit Health; 2020 Jun; 2(6):e295-e302. PubMed ID: 33328123 [TBL] [Abstract][Full Text] [Related]
3. Development and External Validation of Machine Learning Models for Diabetic Microvascular Complications: Cross-Sectional Study With Metabolites. He F; Ng Yin Ling C; Nusinovici S; Cheng CY; Wong TY; Li J; Sabanayagam C J Med Internet Res; 2024 Mar; 26():e41065. PubMed ID: 38546730 [TBL] [Abstract][Full Text] [Related]
4. Metadata information and fundus image fusion neural network for hyperuricemia classification in diabetes. Wei J; Xu Y; Wang H; Niu T; Jiang Y; Shen Y; Su L; Dou T; Peng Y; Bi L; Xu X; Wang Y; Liu K Comput Methods Programs Biomed; 2024 Nov; 256():108382. PubMed ID: 39213898 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807 [TBL] [Abstract][Full Text] [Related]
6. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
8. Prediction of diabetic kidney disease risk using machine learning models: A population-based cohort study of Asian adults. Sabanayagam C; He F; Nusinovici S; Li J; Lim C; Tan G; Cheng CY Elife; 2023 Sep; 12():. PubMed ID: 37706530 [TBL] [Abstract][Full Text] [Related]
9. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease. Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711 [TBL] [Abstract][Full Text] [Related]
10. Cost-effectiveness of a National Telemedicine Diabetic Retinopathy Screening Program in Singapore. Nguyen HV; Tan GS; Tapp RJ; Mital S; Ting DS; Wong HT; Tan CS; Laude A; Tai ES; Tan NC; Finkelstein EA; Wong TY; Lamoureux EL Ophthalmology; 2016 Dec; 123(12):2571-2580. PubMed ID: 27726962 [TBL] [Abstract][Full Text] [Related]
11. A stratified analysis of a deep learning algorithm in the diagnosis of diabetic retinopathy in a real-world study. Li N; Ma M; Lai M; Gu L; Kang M; Wang Z; Jiao S; Dang K; Deng J; Ding X; Zhen Q; Zhang A; Shen T; Zheng Z; Wang Y; Peng Y J Diabetes; 2022 Feb; 14(2):111-120. PubMed ID: 34889059 [TBL] [Abstract][Full Text] [Related]
12. Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases. Burlina P; Paul W; Mathew P; Joshi N; Pacheco KD; Bressler NM JAMA Ophthalmol; 2020 Oct; 138(10):1070-1077. PubMed ID: 32880609 [TBL] [Abstract][Full Text] [Related]
13. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Rim TH; Lee G; Kim Y; Tham YC; Lee CJ; Baik SJ; Kim YA; Yu M; Deshmukh M; Lee BK; Park S; Kim HC; Sabayanagam C; Ting DSW; Wang YX; Jonas JB; Kim SS; Wong TY; Cheng CY Lancet Digit Health; 2020 Oct; 2(10):e526-e536. PubMed ID: 33328047 [TBL] [Abstract][Full Text] [Related]
14. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images. Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893 [TBL] [Abstract][Full Text] [Related]
15. The automatic detection of diabetic kidney disease from retinal vascular parameters combined with clinical variables using artificial intelligence in type-2 diabetes patients. Shi S; Gao L; Zhang J; Zhang B; Xiao J; Xu W; Tian Y; Ni L; Wu X BMC Med Inform Decis Mak; 2023 Oct; 23(1):241. PubMed ID: 37904184 [TBL] [Abstract][Full Text] [Related]
16. Development and validation of a risk score for diabetic kidney disease prediction in type 2 diabetes patients: a machine learning approach. Hosseini Sarkhosh SM; Hemmatabadi M; Esteghamati A J Endocrinol Invest; 2023 Feb; 46(2):415-423. PubMed ID: 36114952 [TBL] [Abstract][Full Text] [Related]
17. A deep learning model for screening type 2 diabetes from retinal photographs. Yun JS; Kim J; Jung SH; Cha SA; Ko SH; Ahn YB; Won HH; Sohn KA; Kim D Nutr Metab Cardiovasc Dis; 2022 May; 32(5):1218-1226. PubMed ID: 35197214 [TBL] [Abstract][Full Text] [Related]
18. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169 [TBL] [Abstract][Full Text] [Related]
19. Association of Diabetic Retinopathy and Diabetic Kidney Disease With All-Cause and Cardiovascular Mortality in a Multiethnic Asian Population. Sabanayagam C; Chee ML; Banu R; Cheng CY; Lim SC; Tai ES; Coffman T; Wong TY JAMA Netw Open; 2019 Mar; 2(3):e191540. PubMed ID: 30924904 [TBL] [Abstract][Full Text] [Related]
20. Ethnic Differences in the Prevalence and Risk Factors of Diabetic Retinopathy: The Singapore Epidemiology of Eye Diseases Study. Tan GS; Gan A; Sabanayagam C; Tham YC; Neelam K; Mitchell P; Wang JJ; Lamoureux EL; Cheng CY; Wong TY Ophthalmology; 2018 Apr; 125(4):529-536. PubMed ID: 29217148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]