BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37659275)

  • 1. Crash injury severity prediction considering data imbalance: A Wasserstein generative adversarial network with gradient penalty approach.
    Li Y; Yang Z; Xing L; Yuan C; Liu F; Wu D; Yang H
    Accid Anal Prev; 2023 Nov; 192():107271. PubMed ID: 37659275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning for spatio-temporal transferability of real-time crash prediction models.
    Man CK; Quddus M; Theofilatos A
    Accid Anal Prev; 2022 Feb; 165():106511. PubMed ID: 34894483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

  • 4. Effectiveness of resampling methods in coping with imbalanced crash data: Crash type analysis and predictive modeling.
    Morris C; Yang JJ
    Accid Anal Prev; 2021 Sep; 159():106240. PubMed ID: 34144225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of motor vehicle crash injury severity: A hybrid approach for imbalanced data.
    Jeong H; Jang Y; Bowman PJ; Masoud N
    Accid Anal Prev; 2018 Nov; 120():250-261. PubMed ID: 30173007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on machine learning based algorithms for prediction of motorcycle crash severity.
    Wahab L; Jiang H
    PLoS One; 2019; 14(4):e0214966. PubMed ID: 30947250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based injury severity prediction of level 1 trauma center enrolled patients associated with car-to-car crashes in Korea.
    Kong JS; Lee KH; Kim OH; Lee HY; Kang CY; Choi D; Kim SC; Jeong H; Kang DR; Sung TE
    Comput Biol Med; 2023 Feb; 153():106393. PubMed ID: 36586232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and analysis of likelihood of freeway crash occurrence considering risky driving behavior.
    Ma Y; Zhang J; Lu J; Chen S; Xing G; Feng R
    Accid Anal Prev; 2023 Nov; 192():107244. PubMed ID: 37573710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injury severity prediction of traffic crashes with ensemble machine learning techniques: a comparative study.
    Jamal A; Zahid M; Tauhidur Rahman M; Al-Ahmadi HM; Almoshaogeh M; Farooq D; Ahmad M
    Int J Inj Contr Saf Promot; 2021 Dec; 28(4):408-427. PubMed ID: 34060410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach.
    Zhu S; Wang K; Li C
    Int J Environ Res Public Health; 2021 Nov; 18(21):. PubMed ID: 34770076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining imbalanced classification algorithms in predicting real-time traffic crash risk.
    Peng Y; Li C; Wang K; Gao Z; Yu R
    Accid Anal Prev; 2020 Sep; 144():105610. PubMed ID: 32559659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Crash Severity Model Handling Class Imbalance and Implementing Ordered Nature: Focusing on Elderly Drivers.
    Kim S; Lym Y; Kim KJ
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33670553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data.
    Xiao Y; Wu J; Lin Z
    Comput Biol Med; 2021 Aug; 135():104540. PubMed ID: 34153791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of high-risk roadway segments for wrong-way driving crash using rare event modeling and data augmentation techniques.
    Ashraf MT; Dey K; Mishra S
    Accid Anal Prev; 2023 Mar; 181():106933. PubMed ID: 36577242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of mortality prediction models for road traffic accidents: an ensemble technique for imbalanced data.
    Boo Y; Choi Y
    BMC Public Health; 2022 Aug; 22(1):1476. PubMed ID: 35918672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention based spatio-temporal graph convolutional network with focal loss for crash risk evaluation on urban road traffic network based on multi-source risks.
    Liu X; Lu J; Chen X; Fong YHC; Ma X; Zhang F
    Accid Anal Prev; 2023 Nov; 192():107262. PubMed ID: 37598458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting pedestrian-involved crash severity using inception-v3 deep learning model.
    Khan MN; Das S; Liu J
    Accid Anal Prev; 2024 Mar; 197():107457. PubMed ID: 38219599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting and factor analysis of rider injury severity in two-wheeled motorcycle and vehicle crash accidents based on an interpretable machine learning framework.
    Wei T; Zhu T; Lin M; Liu H
    Traffic Inj Prev; 2024; 25(2):194-201. PubMed ID: 38019553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol.
    Assi K; Rahman SM; Mansoor U; Ratrout N
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32751470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.