These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37659304)
1. Enhancing potassium ions adsorption on mesoporous carbon spheres with abundant internal surface via engineering sulfur doping sites towards superior rate capability. Liu C; Feng X; Zhao Y; Fan H; Zheng R; Wang Z; Arandiyan H; Wang Y; Bhargava SK; Liu Y; Sun H; Shao Z J Colloid Interface Sci; 2023 Dec; 652(Pt B):1325-1337. PubMed ID: 37659304 [TBL] [Abstract][Full Text] [Related]
2. High Capacity and Fast Kinetics of Potassium-Ion Batteries Boosted by Nitrogen-Doped Mesoporous Carbon Spheres. Zheng J; Wu Y; Tong Y; Liu X; Sun Y; Li H; Niu L Nanomicro Lett; 2021 Aug; 13(1):174. PubMed ID: 34389917 [TBL] [Abstract][Full Text] [Related]
3. Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Shi X; Zhang Y; Xu G; Guo S; Pan A; Zhou J; Liang S Sci Bull (Beijing); 2020 Dec; 65(23):2014-2021. PubMed ID: 36659060 [TBL] [Abstract][Full Text] [Related]
4. Heteroatoms-Doped Mesoporous Carbon Nanosheets with Dual Diffusion Pathways for Highly Efficient Potassium Ion Storage. Wang H; Ding H; Wang Z; Zhu Y; Chen Z; Song B Small; 2024 Jul; 20(27):e2310908. PubMed ID: 38279585 [TBL] [Abstract][Full Text] [Related]
5. Molecular structure regulation of FCCs enabling N/S co-doped hollow amorphous carbon with enlarged interlayer spacing and rich defects for superior potassium storage. Wang X; He Z; Huo K; Liu J; Zhao Q; Wu M J Colloid Interface Sci; 2024 May; 662():516-526. PubMed ID: 38364476 [TBL] [Abstract][Full Text] [Related]
6. Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. Zheng F; Chu K; Yang Y; Li Z; Wei L; Xu Y; Yao G; Chen Q ACS Appl Mater Interfaces; 2022 Feb; 14(7):9212-9221. PubMed ID: 35152696 [TBL] [Abstract][Full Text] [Related]
7. Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. Liu Q; Han F; Zhou J; Li Y; Chen L; Zhang F; Zhou D; Ye C; Yang J; Wu X; Liu J ACS Appl Mater Interfaces; 2020 May; 12(18):20838-20848. PubMed ID: 32294380 [TBL] [Abstract][Full Text] [Related]
8. Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors. Zhao L; Sun S; Lin J; Zhong L; Chen L; Guo J; Yin J; Alshareef HN; Qiu X; Zhang W Nanomicro Lett; 2023 Jan; 15(1):41. PubMed ID: 36705765 [TBL] [Abstract][Full Text] [Related]
9. Revealing the Charge Storage Mechanism in Porous Carbon to Achieve Efficient K Ion Storage. Jiang M; Sun N; Li T; Yu J; Somoro RA; Jia M; Xu B Small; 2024 Aug; 20(32):e2401478. PubMed ID: 38528390 [TBL] [Abstract][Full Text] [Related]
10. Constructing Active BN Sites in Carbon Nanosheets for High-Capacity and Fast Charging Toward Potassium Ion Storage. Yang L; Cao Z; Yin J; Wang C; Ouyang D; Zhu H; Wang Y; Cavallo L; Alshareef HN; Yin J Small; 2023 May; 19(20):e2300440. PubMed ID: 36808688 [TBL] [Abstract][Full Text] [Related]
11. Biomass-derived carbon-sulfur hybrids boosting electrochemical kinetics to achieve high potassium storage performance. Cao B; Gao S; Ma Y; Zhang D; Guo Z; Du M; Xin Z; Zhou C; Liu H J Colloid Interface Sci; 2024 May; 661():598-605. PubMed ID: 38308898 [TBL] [Abstract][Full Text] [Related]
12. A new strategy for achieving high K Wei W; Zheng Y; Huang M; Shi J; Li L; Shi Z; Liu S; Wang H Nanoscale; 2021 Mar; 13(9):4911-4920. PubMed ID: 33625424 [TBL] [Abstract][Full Text] [Related]
13. Ultra-High Sulfur-Doped Hierarchical Porous Hollow Carbon Sphere Anodes Enabling Unprecedented Durable Potassium-Ion Hybrid Capacitors. Qiu C; Li M; Qiu D; Yue C; Xian L; Liu S; Wang F; Yang R ACS Appl Mater Interfaces; 2021 Oct; 13(42):49942-49951. PubMed ID: 34643371 [TBL] [Abstract][Full Text] [Related]
14. Puffing Up Hollow Carbon Nanofibers with High-Energy Metal-Organic Frameworks for Capacitive-Dominated Potassium-Ion Storage. Wu Y; Cheng J; Liang Z; Tang Y; Qiu T; Gao S; Zhong R; Zou R Small; 2022 Feb; 18(5):e2105767. PubMed ID: 34881507 [TBL] [Abstract][Full Text] [Related]
15. Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. Zhang W; Yin J; Sun M; Wang W; Chen C; Altunkaya M; Emwas AH; Han Y; Schwingenschlögl U; Alshareef HN Adv Mater; 2020 Jun; 32(25):e2000732. PubMed ID: 32410270 [TBL] [Abstract][Full Text] [Related]
16. 3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassium-Ion Storage. Lv C; Xu W; Liu H; Zhang L; Chen S; Yang X; Xu X; Yang D Small; 2019 Jun; 15(23):e1900816. PubMed ID: 31021514 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. Jiang Y; Yang Y; Xu R; Cheng X; Huang H; Shi P; Yao Y; Yang H; Li D; Zhou X; Chen Q; Feng Y; Rui X; Yu Y ACS Nano; 2021 Jun; 15(6):10217-10227. PubMed ID: 34037375 [TBL] [Abstract][Full Text] [Related]
18. Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries. Chen J; Chen G; Zhao S; Feng J; Wang R; Parkin IP; He G Small; 2023 Feb; 19(7):e2206588. PubMed ID: 36470658 [TBL] [Abstract][Full Text] [Related]
19. A Site-Selective Doping Strategy of Carbon Anodes with Remarkable K-Ion Storage Capacity. Zhang W; Cao Z; Wang W; Alhajji E; Emwas AH; Costa PMFJ; Cavallo L; Alshareef HN Angew Chem Int Ed Engl; 2020 Mar; 59(11):4448-4455. PubMed ID: 31943603 [TBL] [Abstract][Full Text] [Related]
20. Enhancing High-Capacity and High-Rate Sodium-Ion Storage through Synergistic N,S Dual Doping of Hard Carbon. Cui Y; Cen M; Wang L; Zhang Y; Wang J; Lian J; Li H Chem Asian J; 2023 Aug; 18(16):e202300449. PubMed ID: 37382427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]