These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37659410)

  • 1. Widespread RNA-based cas regulation monitors crRNA abundance and anti-CRISPR proteins.
    Liu C; Wang R; Li J; Cheng F; Shu X; Zhao H; Xue Q; Yu H; Wu A; Wang L; Hu S; Zhang Y; Yang J; Xiang H; Li M
    Cell Host Microbe; 2023 Sep; 31(9):1481-1493.e6. PubMed ID: 37659410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. crRNA complementarity shifts endogenous CRISPR-Cas systems between transcriptional repression and DNA defense.
    Ratner HK; Weiss DS
    RNA Biol; 2021 Nov; 18(11):1560-1573. PubMed ID: 33733999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins.
    Zhang H; Li Z; Daczkowski CM; Gabel C; Mesecar AD; Chang L
    Cell Host Microbe; 2019 Jun; 25(6):815-826.e4. PubMed ID: 31155345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression.
    Workman RE; Pammi T; Nguyen BTK; Graeff LW; Smith E; Sebald SM; Stoltzfus MJ; Euler CW; Modell JW
    Cell; 2021 Feb; 184(3):675-688.e19. PubMed ID: 33421369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus.
    Karneyeva K; Kolesnik M; Livenskyi A; Zgoda V; Zubarev V; Trofimova A; Artamonova D; Ispolatov Y; Severinov K
    J Mol Biol; 2024 Mar; 436(6):168448. PubMed ID: 38266982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.
    Elmore JR; Yokooji Y; Sato T; Olson S; Glover CV; Graveley BR; Atomi H; Terns RM; Terns MP
    RNA Biol; 2013 May; 10(5):828-40. PubMed ID: 23535213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13.
    Vialetto E; Yu Y; Collins SP; Wandera KG; Barquist L; Beisel CL
    Cell Host Microbe; 2022 Aug; 30(8):1151-1162.e6. PubMed ID: 35690065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems.
    Shmakov SA; Barth ZK; Makarova KS; Wolf YI; Brover V; Peters JE; Koonin EV
    Nucleic Acids Res; 2023 Aug; 51(15):8150-8168. PubMed ID: 37283088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas systems.
    Shmakov SA; Barth ZK; Makarova KS; Wolf YI; Brover V; Peters JE; Koonin EV
    bioRxiv; 2023 Mar; ():. PubMed ID: 37090614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.
    Osuna BA; Karambelkar S; Mahendra C; Sarbach A; Johnson MC; Kilcher S; Bondy-Denomy J
    Cell Host Microbe; 2020 Jul; 28(1):23-30.e5. PubMed ID: 32325051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; GerĂ³s AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.
    Pawluk A; Staals RH; Taylor C; Watson BN; Saha S; Fineran PC; Maxwell KL; Davidson AR
    Nat Microbiol; 2016 Jun; 1(8):16085. PubMed ID: 27573108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
    Terns RM; Terns MP
    Biochem Soc Trans; 2013 Dec; 41(6):1416-21. PubMed ID: 24256230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR RNA and anti-CRISPR protein binding to the
    Hong S; Ka D; Yoon SJ; Suh N; Jeong M; Suh JY; Bae E
    J Biol Chem; 2018 Feb; 293(8):2744-2754. PubMed ID: 29348170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
    Li Y; Bondy-Denomy J
    Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
    Charpentier E; Richter H; van der Oost J; White MF
    FEMS Microbiol Rev; 2015 May; 39(3):428-41. PubMed ID: 25994611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems.
    Gebhardt CM; Niopek D
    Methods Mol Biol; 2024; 2774():205-231. PubMed ID: 38441767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus.
    Carte J; Christopher RT; Smith JT; Olson S; Barrangou R; Moineau S; Glover CV; Graveley BR; Terns RM; Terns MP
    Mol Microbiol; 2014 Jul; 93(1):98-112. PubMed ID: 24811454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.