These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37659548)

  • 1. Pressure-driven membrane filtration technology for terminal control of organic DBPs: A review.
    Xia S; Liu M; Yu H; Zou D
    Sci Total Environ; 2023 Dec; 904():166751. PubMed ID: 37659548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.
    Zazouli MA; Kalankesh LR
    J Environ Health Sci Eng; 2017; 15():25. PubMed ID: 29234499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration.
    Song Q; Graham N; Tang Y; Siddique MS; Kimura K; Yu W
    Water Res; 2022 May; 215():118263. PubMed ID: 35290872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes.
    Fang C; Ou T; Wang X; Rui M; Chu W
    Chemosphere; 2020 Dec; 260():127625. PubMed ID: 32758776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.
    Tay MF; Liu C; Cornelissen ER; Wu B; Chong TH
    Water Res; 2018 Feb; 129():180-189. PubMed ID: 29149673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface water filtration using granular media and membranes: A review.
    Hoslett J; Massara TM; Malamis S; Ahmad D; van den Boogaert I; Katsou E; Ahmad B; Ghazal H; Simons S; Wrobel L; Jouhara H
    Sci Total Environ; 2018 Oct; 639():1268-1282. PubMed ID: 29929294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from microfiltration to reverse osmosis.
    Slipko K; Reif D; Wögerbauer M; Hufnagl P; Krampe J; Kreuzinger N
    Water Res; 2019 Nov; 164():114916. PubMed ID: 31394466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.
    Shen J; Schäfer A
    Chemosphere; 2014 Dec; 117():679-91. PubMed ID: 25461935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products.
    Kong FX; Wang XM; Yang HW; Chen JF; Guo CM; Zhang T; Xie YF
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18400-18409. PubMed ID: 28643277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse.
    Takeuchi H; Yamashita N; Nakada N; Tanaka H
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-deposited dynamic membrane filtration - A review.
    Anantharaman A; Chun Y; Hua T; Chew JW; Wang R
    Water Res; 2020 Apr; 173():115558. PubMed ID: 32044594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward.
    Goh PS; Ahmad NA; Wong TW; Yogarathinam LT; Ismail AF
    Chemosphere; 2022 Nov; 307(Pt 3):136018. PubMed ID: 35973494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of disinfection byproducts in drinking water by flexible reverse osmosis: Efficiency comparison, fates, influencing factors, and mechanisms.
    Chen B; Zhang C; Wang L; Yang J; Sun Y
    J Hazard Mater; 2021 Jan; 401():123408. PubMed ID: 32763700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].
    Yang Z; Sun YX; Shi N; Hu HY
    Huan Jing Ke Xue; 2015 Oct; 36(10):3706-14. PubMed ID: 26841602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of microplastic removal from water and wastewater by membrane technologies.
    Acarer S
    Water Sci Technol; 2023 Jul; 88(1):199-219. PubMed ID: 37452543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.