These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37659566)

  • 21. Applications of Red Mud as a Masonry Material: A Review.
    Lu Y; Liu X; Zhang Z; Wang Y; Xue Y; Wang M
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):215-227. PubMed ID: 34997264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red mud with enhanced dealkalization performance by supercritical water technology for efficient SO
    Nie Z; Zhao Q; Zhao Q; Li Y; Yang D; Liu H; Yang S; Li J; Tian S; Li C; Tie C; Huang J; Ning P
    J Environ Manage; 2023 Oct; 344():118469. PubMed ID: 37393878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview of metals recovery from thermal power plant solid wastes.
    Meawad AS; Bojinova DY; Pelovski YG
    Waste Manag; 2010 Dec; 30(12):2548-59. PubMed ID: 20702078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harmless disposal and resource utilization for secondary aluminum dross: A review.
    Shen H; Liu B; Ekberg C; Zhang S
    Sci Total Environ; 2021 Mar; 760():143968. PubMed ID: 33341624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of environmental risk for red mud storage facility in China: a case study in Shandong Province.
    Wen ZC; Ma SH; Zheng SL; Zhang Y; Liang Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11193-11208. PubMed ID: 26920533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red mud recycling by Fe and Al recovery through the hydrometallurgy method: a collaborative strategy for aluminum and iron industry.
    Liu X; Zou Y; Geng R; Li B; Zhu T
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43377-43386. PubMed ID: 36656474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced sequestration of CO
    Wang X; Qi J; Zhu H; Wang J; Zeng H; Li B; Yan S
    J Environ Manage; 2023 Nov; 346():118972. PubMed ID: 37716171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
    Anagnostopoulos A; Navarro ME; Stefanidou M; Ding Y; Gaidajis G
    J Hazard Mater; 2021 Jul; 413():125407. PubMed ID: 33930958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binary reaction behaviors of red mud based cementitious material:Hydration characteristics and Na
    Zhang W; Liu X; Wang Y; Li Z; Li Y; Ren Y
    J Hazard Mater; 2021 May; 410():124592. PubMed ID: 33277076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive treatments of aluminum dross in China: A critical review.
    Wang C; Li S; Guo Y; He Y; Liu J; Liu H
    J Environ Manage; 2023 Nov; 345():118575. PubMed ID: 37451029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metallurgical processes unveil the unexplored "sleeping mines" e- waste: a review.
    Thakur P; Kumar S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32359-32370. PubMed ID: 32533494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approaches for the Treatment and Resource Utilization of Electroplating Sludge.
    Guo S; Wang H; Liu X; Zhang Z; Liu Y
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities.
    Garole DJ; Hossain R; Garole VJ; Sahajwalla V; Nerkar J; Dubal DP
    ChemSusChem; 2020 Jun; 13(12):3079-3100. PubMed ID: 32302053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy.
    Yang D; Shi M; Zhang J; Sasaki A; Endo M
    J Hazard Mater; 2023 Jun; 452():131255. PubMed ID: 36989791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of Alkali-Activated Slag-Based Composite Incorporating Dehydrated Cement Powder and Red Mud.
    Abadel AA; Alghamdi H; Alharbi YR; Alamri M; Khawaji M; Abdulaziz MAM; Nehdi ML
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multitudinous components recovery, heavy metals evolution and environmental impact of coal gasification slag: A review.
    Guo F; Guo Y; Chen L; Jia W; Zhu Y; Li Y; Wang H; Yao X; Zhang Y; Wu J
    Chemosphere; 2023 Oct; 338():139473. PubMed ID: 37451637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of red mud in cement production: a review.
    Liu X; Zhang N
    Waste Manag Res; 2011 Oct; 29(10):1053-63. PubMed ID: 21930526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promotion of bio-oil production from the microwave pyrolysis of cow dung using pretreated red mud as a bifunctional additive: Parameter optimization, energy efficiency evaluation, and mechanism analysis.
    Sun J; Tao J; Huang H; Ma R; Sun S
    Environ Res; 2023 Nov; 236(Pt 2):116806. PubMed ID: 37536556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Carbide Slag on Removal of Na
    Huang X; Zhang Q; Wang W; Pan J; Yang Y
    ACS Omega; 2022 Feb; 7(5):4101-4109. PubMed ID: 35155904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient utilization of red mud waste via stepwise leaching to obtain α-hematite and mesoporous γ-alumina.
    Karimi Z; Rahbar-Kelishami A
    Sci Rep; 2023 May; 13(1):8527. PubMed ID: 37237154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.