These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37659610)

  • 1. Cyanobacterial degradation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D): Its response to the oxidative stress induced by the primary degradation product 2,4-dichlorophenol (2,4-DCP).
    Sachu M; Kynshi BL; Syiem MB
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Nov; 273():109739. PubMed ID: 37659610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing dose dependency of antioxidant defense system in the cyanobacterium Nostoc muscorum Meg 1 chronically exposed to Cd
    Ahad RIA; Syiem MB
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Apr; 242():108950. PubMed ID: 33310062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1.
    Sachu M; Kynshi BL; Syiem MB
    Environ Sci Pollut Res Int; 2022 May; 29(24):36684-36698. PubMed ID: 35064489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of oxidant and antioxidant homeostasis in the cyanobacterium Nostoc muscorum Meg1 under UV-C radiation stress.
    Phukan T; Syiem MB
    Aquat Toxicol; 2019 Aug; 213():105228. PubMed ID: 31229888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure of the cyanobacterium Nostoc muscorum from Portuguese rice fields to Molinate (Ordram(®)): Effects on the antioxidant system and fatty acid profile.
    Galhano V; Gomes-Laranjo J; Peixoto F
    Aquat Toxicol; 2011 Jan; 101(2):367-76. PubMed ID: 21216347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes.
    Bukowska B
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Aug; 135(4):435-41. PubMed ID: 12965188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Use of Rice Field Cyanobacterium Nostoc muscorum in the Evaluation of Butachlor Induced Toxicity and their Degradation.
    Anees S; Suhail S; Pathak N; Zeeshan M
    Bioinformation; 2014; 10(6):365-70. PubMed ID: 25097380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide.
    Gaaied S; Oliveira M; Le Bihanic F; Cachot J; Banni M
    Chemosphere; 2019 Jun; 224():289-297. PubMed ID: 30825855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Salinity-Induced Antioxidative Defense System of Diazotrophic Cyanobacterium Nostoc muscorum.
    Srivastava AK
    J Microbiol Biotechnol; 2010 Nov; 20(11):1506-12. PubMed ID: 21124054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP).
    Vroumsia T; Steiman R; Seigle-Murandi F; Benoit-Guyod JL;
    Chemosphere; 2005 Sep; 60(10):1471-80. PubMed ID: 16201028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system.
    Galhano V; Peixoto F; Gomes-Laranjo J
    Environ Toxicol; 2010 Oct; 25(5):517-26. PubMed ID: 20549627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species.
    Hamed SM; Hassan SH; Selim S; Kumar A; Khalaf SMH; Wadaan MAM; Hozzein WN; AbdElgawad H
    Environ Pollut; 2019 Aug; 251():961-969. PubMed ID: 31234263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells.
    Bongiovanni B; De Lorenzi P; Ferri A; Konjuh C; Rassetto M; Evangelista de Duffard AM; Cardinali DP; Duffard R
    Neurotox Res; 2007 Feb; 11(2):93-9. PubMed ID: 17449452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population.
    Cabral MG; Viegas CA; Teixeira MC; Sá-Correia I
    Chemosphere; 2003 Apr; 51(1):47-54. PubMed ID: 12586155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle.
    Kubrak OI; Atamaniuk TM; Husak VV; Lushchak VI
    Food Chem Toxicol; 2013 Sep; 59():356-61. PubMed ID: 23806294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study.
    Merini LJ; Cuadrado V; Flocco CG; Giulietti AM
    Chemosphere; 2007 Jun; 68(2):259-65. PubMed ID: 17316752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of NSAID drug (paracetamol) to nontarget organism-Nostoc muscorum.
    Fatima S; Asif N; Ahmad R; Fatma T
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35208-35216. PubMed ID: 32583113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of hydroxyl radical-induced breakdown of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-d).
    Peller J; Wiest O; Kamat PV
    Chemistry; 2003 Nov; 9(21):5379-87. PubMed ID: 14613148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats.
    Nakbi A; Tayeb W; Dabbou S; Issaoui M; Grissa AK; Attia N; Hammami M
    Lipids Health Dis; 2010 Aug; 9():89. PubMed ID: 20738870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa).
    Martínez-Ruiz EB; Martínez-Jerónimo F
    Sci Total Environ; 2018 Apr; 619-620():1566-1578. PubMed ID: 29070448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.