These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37660044)
1. Predicting overall survival in chordoma patients using machine learning models: a web-app application. Cheng P; Xie X; Knoedler S; Mi B; Liu G J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044 [TBL] [Abstract][Full Text] [Related]
2. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
3. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
7. Machine learning-based individualized survival prediction model for prognosis in osteosarcoma: Data from the SEER database. Cao P; Dun Y; Xiang X; Wang D; Cheng W; Yan L; Li H Medicine (Baltimore); 2024 Sep; 103(39):e39582. PubMed ID: 39331900 [TBL] [Abstract][Full Text] [Related]
8. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database. Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971 [TBL] [Abstract][Full Text] [Related]
9. Deep-learning-based survival prediction of patients with lower limb melanoma. Zhang J; Yu H; Zheng X; Ming WK; Lak YS; Tom KC; Lee A; Huang H; Chen W; Lyu J; Deng L Discov Oncol; 2023 Nov; 14(1):218. PubMed ID: 38030951 [TBL] [Abstract][Full Text] [Related]
10. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort. Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248 [TBL] [Abstract][Full Text] [Related]
11. The development of a prediction model based on deep learning for prognosis prediction of gastrointestinal stromal tumor: a SEER-based study. Zeng J; Li K; Cao F; Zheng Y Sci Rep; 2024 Mar; 14(1):6609. PubMed ID: 38504089 [TBL] [Abstract][Full Text] [Related]
12. Deep-Learning-Based Model for the Prediction of Cancer-Specific Survival in Patients with Spinal Chordoma. Cheng D; Liu D; Li X; Zhang Z; Mi Z; Tao W; Fu J; Fan H World Neurosurg; 2023 Oct; 178():e835-e845. PubMed ID: 37586553 [TBL] [Abstract][Full Text] [Related]
13. Deep-learning-based survival prediction of patients with cutaneous malignant melanoma. Yu H; Yang W; Wu S; Xi S; Xia X; Zhao Q; Ming WK; Wu L; Hu Y; Deng L; Lyu J Front Med (Lausanne); 2023; 10():1165865. PubMed ID: 37051218 [TBL] [Abstract][Full Text] [Related]
14. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
15. Deep learning model for predicting postoperative survival of patients with gastric cancer. Zeng J; Song D; Li K; Cao F; Zheng Y Front Oncol; 2024; 14():1329983. PubMed ID: 38628668 [TBL] [Abstract][Full Text] [Related]
16. Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models. Xia K; Chen D; Jin S; Yi X; Luo L Sci Rep; 2023 Sep; 13(1):14827. PubMed ID: 37684259 [TBL] [Abstract][Full Text] [Related]
17. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Adeoye J; Hui L; Koohi-Moghadam M; Tan JY; Choi SW; Thomson P Int J Med Inform; 2022 Jan; 157():104635. PubMed ID: 34800847 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of novel interpretable survival prediction models based on drug exposures for severe heart failure during vulnerable period. Guo Y; Yu F; Jiang FF; Yin SJ; Jiang MH; Li YJ; Yang HY; Chen LR; Cai WK; He GH J Transl Med; 2024 Aug; 22(1):743. PubMed ID: 39107765 [TBL] [Abstract][Full Text] [Related]
19. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763 [TBL] [Abstract][Full Text] [Related]
20. A novel staging system based on deep learning for overall survival in patients with esophageal squamous cell carcinoma. Zhang H; Jiang X; Yu Q; Yu H; Xu C J Cancer Res Clin Oncol; 2023 Sep; 149(11):8935-8944. PubMed ID: 37154930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]