BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37660048)

  • 1. Enhancing photosynthetic CO
    Li D; Dong H; Cao X; Wang W; Li C
    Nat Commun; 2023 Sep; 14(1):5337. PubMed ID: 37660048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubisco proton production can drive the elevation of CO
    Long BM; Förster B; Pulsford SB; Price GD; Badger MR
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants' CO
    Routier C; Vallan L; Daguerre Y; Juvany M; Istif E; Mantione D; Brochon C; Hadziioannou G; Strand Å; Näsholm T; Cloutet E; Pavlopoulou E; Stavrinidou E
    ACS Nano; 2023 Feb; 17(4):3430-3441. PubMed ID: 36796108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae).
    Galmés J; Andralojc PJ; Kapralov MV; Flexas J; Keys AJ; Molins A; Parry MA; Conesa MÀ
    New Phytol; 2014 Aug; 203(3):989-99. PubMed ID: 24861241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri.
    El-Ansari O; Colman B
    Physiol Plant; 2015 Jan; 153(1):175-82. PubMed ID: 24828745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for Engineering Biophysical CO
    Hennacy JH; Jonikas MC
    Annu Rev Plant Biol; 2020 Apr; 71():461-485. PubMed ID: 32151155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.
    Raines CA
    Plant Cell Environ; 2006 Mar; 29(3):331-9. PubMed ID: 17080589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy crosstalk between photosynthesis and the algal CO
    Burlacot A; Peltier G
    Trends Plant Sci; 2023 Jul; 28(7):795-807. PubMed ID: 37087359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved
    Wilson RH; Martin-Avila E; Conlan C; Whitney SM
    J Biol Chem; 2018 Jan; 293(1):18-27. PubMed ID: 28986448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.
    Kaiser E; Kromdijk J; Harbinson J; Heuvelink E; Marcelis LF
    Ann Bot; 2017 Jan; 119(1):191-205. PubMed ID: 28025286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis.
    Aguiló-Nicolau P; Galmés J; Fais G; Capó-Bauçà S; Cao G; Iñiguez C
    Photosynth Res; 2023 May; 156(2):231-245. PubMed ID: 36941458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RuBP Limitation of Photosynthetic Carbon Fixation during NH(3) Assimilation : Interactions between Photosynthesis, Respiration, and Ammonium Assimilation in N-Limited Green Algae.
    Elrifi IR; Holmes JJ; Weger HG; Mayo WP; Turpin DH
    Plant Physiol; 1988 Jun; 87(2):395-401. PubMed ID: 16666153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon assimilation in upper subtidal macroalgae is determined by an inverse correlation between Rubisco carboxylation efficiency and CO
    Capó-Bauçà S; Galmés J; Aguiló-Nicolau P; Ramis-Pozuelo S; Iñiguez C
    New Phytol; 2023 Mar; 237(6):2027-2038. PubMed ID: 36385703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The challenge of engineering Rubisco for improving photosynthesis.
    Gionfriddo M; Zang K; Hayer-Hartl M
    FEBS Lett; 2023 Jul; 597(13):1679-1680. PubMed ID: 37334940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria.
    Whitney SM; Sharwood RE; Orr D; White SJ; Alonso H; Galmés J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14688-93. PubMed ID: 21849620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of diffusive and biochemical capacities for photosynthesis was predominantly shaped by [CO
    Haworth M; Marino G; Loreto F; Centritto M
    Sci Total Environ; 2022 Sep; 840():156606. PubMed ID: 35691351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of Cyanobacterial (
    Satagopan S; Huening KA; Tabita FR
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complex character of photosynthesis in cucumber fruit.
    Sui X; Shan N; Hu L; Zhang C; Yu C; Ren H; Turgeon R; Zhang Z
    J Exp Bot; 2017 Mar; 68(7):1625-1637. PubMed ID: 28369547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.