These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37660136)

  • 1. Compact all-fiber quantum-inspired LiDAR with over 100 dB noise rejection and single photon sensitivity.
    Liu H; Qin C; Papangelakis G; Iu ML; Helmy AS
    Nat Commun; 2023 Sep; 14(1):5344. PubMed ID: 37660136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact and efficient 1064 nm up-conversion atmospheric lidar.
    Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X
    Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Induced Coherence Light Detection and Ranging.
    Qian G; Xu X; Zhu SA; Xu C; Gao F; Yakovlev VV; Liu X; Zhu SY; Wang DW
    Phys Rev Lett; 2023 Jul; 131(3):033603. PubMed ID: 37540869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar.
    Blakey PS; Liu H; Papangelakis G; Zhang Y; Léger ZM; Iu ML; Helmy AS
    Nat Commun; 2022 Sep; 13(1):5633. PubMed ID: 36163323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entangled Two-Photon Absorption Spectroscopy.
    Schlawin F; Dorfman KE; Mukamel S
    Acc Chem Res; 2018 Sep; 51(9):2207-2214. PubMed ID: 30179458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation.
    Sun X; Abshire JB
    Opt Express; 2012 Sep; 20(19):21291-304. PubMed ID: 23037252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Two-Photon LIDAR with Incoherent Light.
    Lee CH; Kim Y; Im DG; Kim US; Tamma V; Kim YH
    Phys Rev Lett; 2023 Dec; 131(22):223602. PubMed ID: 38101366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing oil in water with an all-fiber underwater single-photon Raman lidar.
    Shangguan M; Yang Z; Shangguan M; Lin Z; Liao Z; Guo Y; Liu C
    Appl Opt; 2023 Jul; 62(19):5301-5305. PubMed ID: 37707235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small All-Range Lidar for Asteroid and Comet Core Missions.
    Sun X; Cremons DR; Mazarico E; Yang G; Abshire JB; Smith DE; Zuber MT; Storm M; Martin N; Hwang J; Beck JD; Huntoon NR; Rawlings DM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range.
    Shangguan M; Yang Z; Lin Z; Weng Z; Sun J
    Opt Lett; 2024 Feb; 49(3):626-629. PubMed ID: 38300075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.
    Li Y; Hoskins A; Schlottau F; Wagner KH; Embry C; Babbitt WR
    Appl Opt; 2006 Sep; 45(25):6409-20. PubMed ID: 16912777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise.
    Banaszek K; Dragan A; Wasilewski W; Radzewicz C
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):257901. PubMed ID: 15245064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-frequency optical filtering: efficiency vs. temporal-mode discrimination in incoherent and coherent implementations.
    Raymer MG; Banaszek K
    Opt Express; 2020 Oct; 28(22):32819-32836. PubMed ID: 33114958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the spectral asymmetry of TEA CO2 laser pulses to determine the Doppler-shift sign in coherent lidars with low frequency stability.
    Marinov VS; Stoyanov DV
    Appl Opt; 1999 Apr; 38(12):2579-85. PubMed ID: 18319830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic reshaping of single-photon spectra using cross-phase modulation.
    Matsuda N
    Sci Adv; 2016 Mar; 2(3):e1501223. PubMed ID: 27051862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.
    Qiu J; Xia H; Shangguan M; Dou X; Li M; Wang C; Shang X; Lin S; Liu J
    Opt Lett; 2017 Nov; 42(21):4454-4457. PubMed ID: 29088186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-modulated continuous-wave 3D imaging with high photon efficiency.
    Huang X; Hong Y; Li ZP; Xu F
    Opt Lett; 2022 Jul; 47(14):3568-3571. PubMed ID: 35838732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing LiDAR performance using threshold photon-number-resolving detection.
    Wu M; Zhao X; Chen R; Zhang L; He W; Chen Q
    Opt Express; 2024 Jan; 32(2):2574-2589. PubMed ID: 38297783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum illumination using polarization-path entangled single photons for low reflectivity object detection in a noisy background.
    Shafi KM; Padhye A; Chandrashekar CM
    Opt Express; 2023 Sep; 31(20):32093-32104. PubMed ID: 37859019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.