BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37660273)

  • 1. Uracil Induced Simultaneously Strengthening Grain Boundaries and Interfaces Enables High-Performance Perovskite Solar Cells with Superior Operational Stability.
    Wang M; Sun H; Wang M; Meng L; Li L
    Adv Mater; 2024 Jan; 36(2):e2306415. PubMed ID: 37660273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorinated Cation-Based 2D Perovskites for Efficient and Stable 3D/2D Heterojunction Perovskite Solar Cells.
    Bati ASR; Jiang W; Chu R; Mallo N; Burn PL; Gentle IR; Shaw PE
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38049378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Universal Strategy of Intermolecular Exchange to Stabilize α-FAPbI
    Wang M; Sun H; Meng L; Wang M; Li L
    Adv Mater; 2022 Jun; 34(23):e2200041. PubMed ID: 35332958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-Scalable Fabrication of SnO
    Tong G; Ono LK; Liu Y; Zhang H; Bu T; Qi Y
    Nanomicro Lett; 2021 Jul; 13(1):155. PubMed ID: 34244883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High-Efficient Perovskite Solar Cells.
    Gao Y; Wu Y; Liu Y; Chen C; Bai X; Yang L; Shi Z; Yu WW; Dai Q; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3631-3641. PubMed ID: 31880905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability.
    Zhou T; Xu Z; Wang R; Dong X; Fu Q; Liu Y
    Adv Mater; 2022 Apr; 34(17):e2200705. PubMed ID: 35233866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO
    Zhong H; Li W; Huang Y; Cao D; Zhang C; Bao H; Guo Z; Wan L; Zhang X; Zhang X; Li Y; Ren X; Wang X; Eder D; Wang K; Liu SF; Wang S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5183-5193. PubMed ID: 35073689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability.
    Zhou Z; Qiang Z; Sakamaki T; Takei I; Shang R; Nakamura E
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22603-22611. PubMed ID: 31144797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fullerene Derivative-Modified SnO
    Cao T; Chen K; Chen Q; Zhou Y; Chen N; Li Y
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33825-33834. PubMed ID: 31436075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulated SnO
    Liu Z; Deng K; Hu J; Li L
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11497-11504. PubMed ID: 31152477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cPCN-Regulated SnO
    Li Z; Gao Y; Zhang Z; Xiong Q; Deng L; Li X; Zhou Q; Fang Y; Gao P
    Nanomicro Lett; 2021 Apr; 13(1):101. PubMed ID: 34138376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells.
    Zou Y; Guo R; Buyruk A; Chen W; Xiao T; Yin S; Jiang X; Kreuzer LP; Mu C; Ameri T; Schwartzkopf M; Roth SV; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52643-52651. PubMed ID: 33190484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 25.24%-Efficiency FACsPbI
    Yang L; Zhou H; Duan Y; Wu M; He K; Li Y; Xu D; Zou H; Yang S; Fang Z; Liu S; Liu Z
    Adv Mater; 2023 Apr; 35(16):e2211545. PubMed ID: 36731421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene-Regulated Perovskite Vertical Growth for High-Performance Solar Cells.
    Wu C; Fang W; Cheng Q; Wan J; Wen R; Wang Y; Song Y; Li M
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210970. PubMed ID: 36050600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions.
    Lv Y; Xu P; Ren G; Chen F; Nan H; Liu R; Wang D; Tan X; Liu X; Zhang H; Chen ZK
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23928-23937. PubMed ID: 29952555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Polymer-Regulated SnO
    You S; Zeng H; Ku Z; Wang X; Wang Z; Rong Y; Zhao Y; Zheng X; Luo L; Li L; Zhang S; Li M; Gao X; Li X
    Adv Mater; 2020 Oct; 32(43):e2003990. PubMed ID: 32954577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precursor engineering for efficient and stable perovskite solar cells.
    Luan F; Li H; Gong S; Chen X; Shou C; Wu Z; Xie H; Yang S
    Nanotechnology; 2022 Nov; 34(5):. PubMed ID: 36322962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional Molecule Assists Passivate Method to Simultaneously Improve the Efficiency and Stability of Perovskite Solar Cells.
    Meng X; Shen B; Sun Q; Deng J; Hu D; Kang B; Silva SRP; Wang X; Wang L
    ChemSusChem; 2023 Apr; 16(7):e202202092. PubMed ID: 36629755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.