BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37660296)

  • 1. Protocol to study projection-specific circuits in the basal ganglia of adult mice using viral vector tracing, optogenetics, and patch-clamp technique.
    Ji YW; Xu XY; Yin C; Zhou C; Xiao C
    STAR Protoc; 2023 Sep; 4(3):102551. PubMed ID: 37660296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for detecting plastic changes in defined neuronal populations in neuropathic mice.
    Zhang Z; Zamponi GW
    STAR Protoc; 2021 Sep; 2(3):100698. PubMed ID: 34382022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patch clamp recording from bipolar cells in the wholemount mouse retina.
    Bohl JM; Shehu A; Hellmer CB; Ichinose T
    STAR Protoc; 2022 Sep; 3(3):101482. PubMed ID: 35769922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology.
    Linders LE; Supiot LF; Du W; D'Angelo R; Adan RAH; Riga D; Meye FJ
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent optogenetic (BL-OG) activation of neurons during mouse postnatal brain development.
    Crespo EL; Prakash M; Bjorefeldt A; Medendorp WE; Shaner NC; Lipscombe D; Moore CI; Hochgeschwender U
    STAR Protoc; 2021 Sep; 2(3):100667. PubMed ID: 34286295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.
    Sizemore RJ; Seeger-Armbruster S; Hughes SM; Parr-Brownlie LC
    J Neurophysiol; 2016 Apr; 115(4):2124-46. PubMed ID: 26888111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic and chemogenetic manipulation of seizure threshold in mice.
    Kravchenko JA; Goldberg EM; Mattis J
    STAR Protoc; 2023 Mar; 4(1):102019. PubMed ID: 36640370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields.
    Shim HJ; Im GH; Jung WB; Moon HS; Dinh TNA; Lee JY; Kim SG
    STAR Protoc; 2022 Dec; 3(4):101846. PubMed ID: 36595930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits.
    Wang G; Wyskiel DR; Yang W; Wang Y; Milbern LC; Lalanne T; Jiang X; Shen Y; Sun QQ; Zhu JJ
    Nat Protoc; 2015 Mar; 10(3):397-412. PubMed ID: 25654757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for targeting the magnocellular neuroendocrine cell ensemble via retrograde tracing from the posterior pituitary.
    Zhang B; Qiu L; Long C; Gao Z
    STAR Protoc; 2021 Sep; 2(3):100787. PubMed ID: 34485946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience.
    Tao C; Zhang G; Xiong Y; Zhou Y
    Front Neural Circuits; 2015; 9():23. PubMed ID: 26052270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system.
    Yamanouchi HM; Kamikouchi A; Tanaka R
    STAR Protoc; 2023 Dec; 4(4):102623. PubMed ID: 37788165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to study microcircuits in the medial entorhinal cortex in mice using multiple patch-clamp recordings and morphological reconstruction.
    Shi Y; Wang G
    STAR Protoc; 2024 Mar; 5(1):102917. PubMed ID: 38421863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex Vivo Optogenetic Interrogation of Long-Range Synaptic Transmission and Plasticity from Medial Prefrontal Cortex to Lateral Entorhinal Cortex.
    Kinnavane L; Banks PJ
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35285827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural circuit-specific gene manipulation in mouse brain
    Kim YE; Kim S; Kim IH
    STAR Protoc; 2022 Dec; 3(4):101807. PubMed ID: 36386891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics.
    Ting JT; Daigle TL; Chen Q; Feng G
    Methods Mol Biol; 2014; 1183():221-42. PubMed ID: 25023312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics.
    Simonnet J; Richevaux L; Fricker D
    Methods Mol Biol; 2021; 2188():285-309. PubMed ID: 33119858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies.
    Murphy C; Matikainen-Ankney B; Chang YH; Copits B; Creed MC
    Int Rev Neurobiol; 2021; 159():187-219. PubMed ID: 34446246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.