These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37660670)

  • 1. HMM-GDAN: Hybrid multi-view and multi-scale graph duplex-attention networks for drug response prediction in cancer.
    Liu Y; Tong S; Chen Y
    Neural Netw; 2023 Oct; 167():213-222. PubMed ID: 37660670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.
    Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MGAT: Multi-view Graph Attention Networks.
    Xie Y; Zhang Y; Gong M; Tang Z; Han C
    Neural Netw; 2020 Dec; 132():180-189. PubMed ID: 32911303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-view feature representation and fusion for drug-drug interactions prediction.
    Wang J; Zhang S; Li R; Chen G; Yan S; Ma L
    BMC Bioinformatics; 2023 Mar; 24(1):93. PubMed ID: 36918766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MMGCN: Multi-modal multi-view graph convolutional networks for cancer prognosis prediction.
    Yang P; Chen W; Qiu H
    Comput Methods Programs Biomed; 2024 Dec; 257():108400. PubMed ID: 39270533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-view heterogeneous graph learning with compressed hypergraph neural networks.
    Huang A; Fang Z; Wu Z; Tan Y; Han P; Wang S; Zhang L
    Neural Netw; 2024 Nov; 179():106562. PubMed ID: 39142173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph Convolutional Network.
    Zou Y; Fang Z; Wu Z; Zheng C; Wang S
    Neural Netw; 2024 Jan; 169():496-505. PubMed ID: 37939538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAGL: A self-attention-based graph learning framework for predicting survival of colorectal cancer patients.
    Yang P; Qiu H; Yang X; Wang L; Wang X
    Comput Methods Programs Biomed; 2024 Jun; 249():108159. PubMed ID: 38583291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGPDI: identifying protein-DNA binding sites based on multi-view graph embedding fusion.
    Zheng M; Sun G; Li X; Fan Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-View Spectral Clustering Based on Multi-Smooth Representation Fusion for Cancer Subtype Prediction.
    Liu J; Ge S; Cheng Y; Wang X
    Front Genet; 2021; 12():718915. PubMed ID: 34552619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
    Wen G; Li L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MGEGFP: a multi-view graph embedding method for gene function prediction based on adaptive estimation with GCN.
    Li W; Zhang H; Li M; Han M; Yin Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35947989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.