BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37660672)

  • 1. Learning domain invariant representations by joint Wasserstein distance minimization.
    Andéol L; Kawakami Y; Wada Y; Kanamori T; Müller KR; Montavon G
    Neural Netw; 2023 Oct; 167():233-243. PubMed ID: 37660672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose.
    Tao Y; Li C; Liang Z; Yang H; Xu J
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition.
    He R; Wu X; Sun Z; Tan T
    IEEE Trans Pattern Anal Mach Intell; 2019 Jul; 41(7):1761-1773. PubMed ID: 29993534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Domain-Independent Deep Representations by Mutual Information Minimization.
    Wang K; Liu J; Wang JY
    Comput Intell Neurosci; 2019; 2019():9414539. PubMed ID: 31316558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional Wasserstein Generator.
    Kim YG; Lee K; Paik MC
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7208-7219. PubMed ID: 36355746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised domain adaptation for Covid-19 classification based on balanced slice Wasserstein distance.
    Gu J; Qian X; Zhang Q; Zhang H; Wu F
    Comput Biol Med; 2023 Sep; 164():107207. PubMed ID: 37480680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised domain adaptation of bearing fault diagnosis based on Join Sliced Wasserstein Distance.
    Chen P; Zhao R; He T; Wei K; Yang Q
    ISA Trans; 2022 Oct; 129(Pt A):504-519. PubMed ID: 35039152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-channel auto-encoders for learning domain invariant representations enabling superior classification of histopathology images.
    Moyes A; Gault R; Zhang K; Ming J; Crookes D; Wang J
    Med Image Anal; 2023 Jan; 83():102640. PubMed ID: 36260951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Representation-Based Autoencoder for Domain Adaptation.
    Yang S; Yu K; Cao F; Wang H; Wu X
    IEEE Trans Cybern; 2022 Aug; 52(8):7464-7477. PubMed ID: 33400661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Target Shift in Adversarial Domain Adaptation.
    Li Y; Murias M; Major S; Dawson G; Carlson DE
    Proc Mach Learn Res; 2019 Apr; 89():616-625. PubMed ID: 37113567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis Test and Confidence Analysis With Wasserstein Distance on General Dimension.
    Imaizumi M; Ota H; Hamaguchi T
    Neural Comput; 2022 May; 34(6):1448-1487. PubMed ID: 35534006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-source adaptation joint kernel sparse representation for visual classification.
    Tao J; Hu W; Wen S
    Neural Netw; 2016 Apr; 76():135-151. PubMed ID: 26894961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WDA: An Improved Wasserstein Distance-Based Transfer Learning Fault Diagnosis Method.
    Zhu Z; Wang L; Peng G; Li S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel kernel Wasserstein distance on Gaussian measures: An application of identifying dental artifacts in head and neck computed tomography.
    Oh JH; Pouryahya M; Iyer A; Apte AP; Deasy JO; Tannenbaum A
    Comput Biol Med; 2020 May; 120():103731. PubMed ID: 32217284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning.
    Hasan SMK; Linte CA
    Appl Sci (Basel); 2022 Dec; 12(23):. PubMed ID: 37125242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wasserstein-based texture analysis in radiomic studies.
    Belkhatir Z; Estépar RSJ; Tannenbaum AR
    Comput Med Imaging Graph; 2022 Dec; 102():102129. PubMed ID: 36308869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of tumor from computed tomography images: A brain-inspired multisource transfer learning under probability distribution adaptation.
    Liu Y; Cui E
    Front Hum Neurosci; 2022; 16():1040536. PubMed ID: 36337851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Domain Adaptation Network Based on Wasserstein Distance for Motor Imagery EEG Classification.
    She Q; Chen T; Fang F; Zhang J; Gao Y; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.