BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37660858)

  • 21. Cadmium-resistant
    Thooppeng P; Junpradit C; Rongsayamanont W; Duangmal K; Prapagdee B
    Int J Phytoremediation; 2023; 25(10):1318-1327. PubMed ID: 36448248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of cellulose nanocrystals from different waste bio-mass collating their liquid crystal ordering with morphological exploration.
    Verma C; Chhajed M; Gupta P; Roy S; Maji PK
    Int J Biol Macromol; 2021 Apr; 175():242-253. PubMed ID: 33561456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose.
    Pawcenis D; Leśniak M; Szumera M; Sitarz M; Profic-Paczkowska J
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1996-2005. PubMed ID: 36208805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre.
    Rasheed M; Jawaid M; Parveez B; Zuriyati A; Khan A
    Int J Biol Macromol; 2020 Oct; 160():183-191. PubMed ID: 32454108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2016 Jan; 135():18-26. PubMed ID: 26453846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of nanocellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method.
    Raju V; Revathiswaran R; Subramanian KS; Parthiban KT; Chandrakumar K; Anoop EV; Chirayil CJ
    Sci Rep; 2023 Jan; 13(1):1199. PubMed ID: 36681725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder.
    Ghasemi S; Behrooz R; Ghasemi I
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5791-7. PubMed ID: 27427633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose.
    L Evdokimova O; S Alves C; M Krsmanović Whiffen R; Ortega Z; Tomás H; Rodrigues J
    J Zhejiang Univ Sci B; 2021 Jun; 22(6):450-461. PubMed ID: 34128369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers.
    Chen C; Huang D; Yang Q; Wang G; Wang X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126645. PubMed ID: 37659487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Valorization of Eichhornia crassipes for the production of cellulose nanocrystals further investigation of plethoric biobased resource.
    Hemida MH; Moustafa H; Mehanny S; Morsy M; Abd El Rahman EN; Ibrahim MM
    Sci Rep; 2024 May; 14(1):12387. PubMed ID: 38811644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils.
    Wang Q; Ji C; Sun J; Zhu Q; Liu J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties.
    Astruc J; Nagalakshmaiah M; Laroche G; Grandbois M; Elkoun S; Robert M
    Carbohydr Polym; 2017 Dec; 178():352-359. PubMed ID: 29050605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling the nanocellulose morphology by preparation conditions.
    Qi Y; Wang S; Liza AA; Li J; Yang G; Zhu W; Song J; Xiao H; Li H; Guo J
    Carbohydr Polym; 2023 Nov; 319():121146. PubMed ID: 37567702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hydrolysis conditions on the morphology of cellulose II nanocrystals (CNC-II) derived from mercerized microcrystalline cellulose.
    Li J; Wang Z; Wang P; Tian J; Liu T; Guo J; Zhu W; Khan MR; Xiao H; Song J
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128936. PubMed ID: 38143058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of different methods for extraction of nanocellulose from yerba mate residues.
    Dahlem MA; Borsoi C; Hansen B; Catto AL
    Carbohydr Polym; 2019 Aug; 218():78-86. PubMed ID: 31221346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and Characterization of Cellulose Nanocrystals from Date Palm Waste.
    Raza M; Abu-Jdayil B; Banat F; Al-Marzouqi AH
    ACS Omega; 2022 Jul; 7(29):25366-25379. PubMed ID: 35910104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of Dielectric and Mechanical Properties of Pretreated Natural Sunn Hemp Fiber-Reinforced Composite in Correlation with Macromolecular Structure of the Fiber.
    Dash C; Das R; Sahu DK; Upreti D; Patro TU; Bisoyi DK
    Biomacromolecules; 2023 Mar; 24(3):1329-1344. PubMed ID: 36848205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.