These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37660858)

  • 41. Investigation of Dielectric and Mechanical Properties of Pretreated Natural Sunn Hemp Fiber-Reinforced Composite in Correlation with Macromolecular Structure of the Fiber.
    Dash C; Das R; Sahu DK; Upreti D; Patro TU; Bisoyi DK
    Biomacromolecules; 2023 Mar; 24(3):1329-1344. PubMed ID: 36848205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy.
    Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM
    Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride.
    Babicka M; Woźniak M; Dwiecki K; Borysiak S; Ratajczak I
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32231037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellulose nanofibrils extracted from the byproduct of cotton plant.
    Miao X; Lin J; Tian F; Li X; Bian F; Wang J
    Carbohydr Polym; 2016 Jan; 136():841-50. PubMed ID: 26572420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellulose Nanocrystals from Fibers of Macauba (
    Corrêa AC; Carmona VB; Simão JA; Galvani F; Marconcini JM; Mattoso LHC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31683786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functionalization of nanocellulose to quaternized nanocellulose tri-iodide and its evaluation as an antimicrobial agent.
    Bansal M; Kumar D; Chauhan GS; Kaushik A; Kaur G
    Int J Biol Macromol; 2021 Nov; 190():1007-1014. PubMed ID: 34517030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.
    Satyamurthy P; Vigneshwaran N
    Enzyme Microb Technol; 2013 Jan; 52(1):20-5. PubMed ID: 23199734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Documenting Potential Sunn Hemp (Crotalaria juncea L.) (Fabaceae) Pollinators in Florida.
    Meagher RL; Watrous KM; Fleischer SJ; Nagoshi RN; Brown JT; Bowers K; Miller N; Hight SD; Legaspi JC; Westbrook JK
    Environ Entomol; 2019 Apr; 48(2):343-350. PubMed ID: 30753472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings.
    Samyn P; Cosemans P
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatment.
    Babicka M; Woźniak M; Szentner K; Bartkowiak M; Peplińska B; Dwiecki K; Borysiak S; Ratajczak I
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.
    Shaheen TI; Emam HE
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1599-1606. PubMed ID: 28988844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of pulp derived nanocellulose hydrogels using AVAP® technology.
    Kyle S; Jessop ZM; Al-Sabah A; Hawkins K; Lewis A; Maffeis T; Charbonneau C; Gazze A; Francis LW; Iakovlev M; Nelson K; Eichhorn SJ; Whitaker IS
    Carbohydr Polym; 2018 Oct; 198():270-280. PubMed ID: 30093000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative analysis of millet bran nanocelluloses with various morphologies: Revealing differences in the formation mechanism and structure characteristics.
    Zhu Y; Wei Z; Jiang F; Hu W; Yu X; Du SK
    Carbohydr Polym; 2024 Oct; 342():122419. PubMed ID: 39048244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and Characterization of Cellulose Nanocrystals from Rejected Fibers Originated in the Kraft Pulping Process.
    Aguayo MG; Fernández Pérez A; Reyes G; Oviedo C; Gacitúa W; Gonzalez R; Uyarte O
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Nanocellulose Structure on Paper Reinforcement.
    Perdoch W; Cao Z; Florczak P; Markiewicz R; Jarek M; Olejnik K; Mazela B
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.