These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37661394)
1. Potential Association between Methylmercury Neurotoxicity and Inflammation. Shinoda Y; Akiyama M; Toyama T Biol Pharm Bull; 2023; 46(9):1162-1168. PubMed ID: 37661394 [TBL] [Abstract][Full Text] [Related]
2. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Novo JP; Martins B; Raposo RS; Pereira FC; Oriá RB; Malva JO; Fontes-Ribeiro C Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803585 [TBL] [Abstract][Full Text] [Related]
3. Shedding new light on methylmercury-induced neurotoxicity through the crosstalk between autophagy and apoptosis. Ni L; Wei Y; Pan J; Li X; Xu B; Deng Y; Yang T; Liu W Toxicol Lett; 2022 Apr; 359():55-64. PubMed ID: 35122893 [TBL] [Abstract][Full Text] [Related]
4. Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes. Yuntao F; Chenjia G; Panpan Z; Wenjun Z; Suhua W; Guangwei X; Haifeng S; Jian L; Wanxin P; Yun F; Cai J; Aschner M; Rongzhu L Arch Toxicol; 2016 Feb; 90(2):333-45. PubMed ID: 25488884 [TBL] [Abstract][Full Text] [Related]
5. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. Fujimura M; Usuki F Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806222 [TBL] [Abstract][Full Text] [Related]
6. Methylmercury-induced neural degeneration in rat dorsal root ganglion is associated with the accumulation of microglia/macrophages and the proliferation of Schwann cells. Shinoda Y; Ehara S; Tatsumi S; Yoshida E; Takahashi T; Eto K; Kaji T; Fujiwara Y J Toxicol Sci; 2019; 44(3):191-199. PubMed ID: 30842371 [TBL] [Abstract][Full Text] [Related]
7. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Wei Y; Ni L; Pan J; Li X; Xu B; Deng Y; Yang T; Liu W Neuroscience; 2021 Aug; 469():175-190. PubMed ID: 34174372 [TBL] [Abstract][Full Text] [Related]
8. Glia and methylmercury neurotoxicity. Ni M; Li X; Rocha JB; Farina M; Aschner M J Toxicol Environ Health A; 2012; 75(16-17):1091-101. PubMed ID: 22852858 [TBL] [Abstract][Full Text] [Related]
9. Revisiting Astrocytic Roles in Methylmercury Intoxication. Arrifano GP; Augusto-Oliveira M; Souza-Monteiro JR; Macchi BM; Lima RR; Suñol C; do Nascimento JLM; Crespo-Lopez ME Mol Neurobiol; 2021 Sep; 58(9):4293-4308. PubMed ID: 33990914 [TBL] [Abstract][Full Text] [Related]
11. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Yin Z; Milatovic D; Aschner JL; Syversen T; Rocha JB; Souza DO; Sidoryk M; Albrecht J; Aschner M Brain Res; 2007 Feb; 1131(1):1-10. PubMed ID: 17182013 [TBL] [Abstract][Full Text] [Related]
12. In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice. Fujimura M; Usuki F Toxicology; 2017 Dec; 392():55-63. PubMed ID: 29030019 [TBL] [Abstract][Full Text] [Related]
13. Microglial ROCK is essential for chronic methylmercury-induced neurodegeneration. Shinozaki Y; Danjo Y; Koizumi S J Neurochem; 2019 Oct; 151(1):64-78. PubMed ID: 31278875 [TBL] [Abstract][Full Text] [Related]
14. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Prince LM; Aschner M; Bowman AB Biochim Biophys Acta Gen Subj; 2019 Dec; 1863(12):129300. PubMed ID: 30742955 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress in MeHg-induced neurotoxicity. Farina M; Aschner M; Rocha JB Toxicol Appl Pharmacol; 2011 Nov; 256(3):405-17. PubMed ID: 21601588 [TBL] [Abstract][Full Text] [Related]
16. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Aschner M; Syversen T; Souza DO; Rocha JB; Farina M Braz J Med Biol Res; 2007 Mar; 40(3):285-91. PubMed ID: 17334523 [TBL] [Abstract][Full Text] [Related]
17. The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress. Liu W; Xu Z; Yang T; Deng Y; Xu B; Feng S; Li Y Free Radic Res; 2014 Aug; 48(8):849-63. PubMed ID: 24821269 [TBL] [Abstract][Full Text] [Related]
18. BDNF specifically expressed in hippocampal neurons is involved in methylmercury neurotoxicity resistance. Fujimura M; Unoki T Environ Toxicol; 2024 May; 39(5):3149-3159. PubMed ID: 38323385 [TBL] [Abstract][Full Text] [Related]
19. Comparison of alterations in amino acids content in cultured astrocytes or neurons exposed to methylmercury separately or in co-culture. Yin Z; Albrecht J; Syversen T; Jiang H; Summar M; Rocha JB; Farina M; Aschner M Neurochem Int; 2009; 55(1-3):136-42. PubMed ID: 19428818 [TBL] [Abstract][Full Text] [Related]