BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37661425)

  • 1. Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.
    Takenaka D; Ozawa Y; Yamamoto K; Shinohara M; Ikedo M; Yui M; Oshima Y; Hamabuchi N; Nagata H; Ueda T; Ikeda H; Iwase A; Yoshikawa T; Toyama H; Ohno Y
    Magn Reson Med Sci; 2023 Sep; ():. PubMed ID: 37661425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN.
    Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H
    Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.
    Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T
    Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI.
    Nagata H; Ohno Y; Yoshikawa T; Yamamoto K; Shinohara M; Ikedo M; Yui M; Matsuyama T; Takahashi T; Bando S; Furuta M; Ueda T; Ozawa Y; Toyama H
    Magn Reson Imaging; 2024 May; 108():67-76. PubMed ID: 38309378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction.
    Oostveen LJ; Smit EJ; Dekker HM; Buckens CF; Pegge SAH; de Lange F; Sechopoulos I; Prokop M
    AJR Am J Roentgenol; 2023 Mar; 220(3):381-388. PubMed ID: 36259592
    [No Abstract]   [Full Text] [Related]  

  • 8. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time.
    Jurka M; Macova I; Wagnerova M; Capoun O; Jakubicek R; Ourednicek P; Lambert L; Burgetova A
    Quant Imaging Med Surg; 2024 May; 14(5):3534-3543. PubMed ID: 38720867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction.
    Kim M; Lee HJ; Lee S; Lee J; Kang Y
    Eur Radiol; 2024 Jan; ():. PubMed ID: 38231393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis.
    Iwamura M; Ide S; Sato K; Kakuta A; Tatsuo S; Nozaki A; Wakayama T; Ueno T; Haga R; Kakizaki M; Yokoyama Y; Yamauchi R; Tsushima F; Shibutani K; Tomiyama M; Kakeda S
    Magn Reson Med Sci; 2024 Apr; 23(2):184-192. PubMed ID: 36927877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion-weighted MR imaging using FASE sequence for 3T MR system: Preliminary comparison of capability for N-stage assessment by means of diffusion-weighted MR imaging using EPI sequence, STIR FASE imaging and FDG PET/CT for non-small cell lung cancer patients.
    Ohno Y; Koyama H; Yoshikawa T; Takenaka D; Kassai Y; Yui M; Matsumoto S; Sugimura K
    Eur J Radiol; 2015 Nov; 84(11):2321-31. PubMed ID: 26231045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized 3D brachial plexus MR neurography using deep learning reconstruction.
    Sneag DB; Queler SC; Campbell G; Colucci PG; Lin J; Lin Y; Wen Y; Li Q; Tan ET
    Skeletal Radiol; 2024 Apr; 53(4):779-789. PubMed ID: 37914895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated 3D high-resolution T2-weighted breast MRI with deep learning constrained compressed sensing, comparison with conventional T2-weighted sequence on 3.0 T.
    Yang F; Pan X; Zhu K; Xiao Y; Yue X; Peng P; Zhang X; Huang J; Chen J; Yuan Y; Sun J
    Eur J Radiol; 2022 Nov; 156():110562. PubMed ID: 36270194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance.
    Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N
    Invest Radiol; 2023 Nov; ():. PubMed ID: 37975732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the utility of whole-body MRI with and without contrast-enhanced Quick 3D and double RF fat suppression techniques, conventional whole-body MRI, PET/CT and conventional examination for assessment of recurrence in NSCLC patients.
    Ohno Y; Nishio M; Koyama H; Yoshikawa T; Matsumoto S; Takenaka D; Seki S; Tsubakimoto M; Sugimura K
    Eur J Radiol; 2013 Nov; 82(11):2018-27. PubMed ID: 24012452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 19. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of deep learning-based reconstruction on high-resolution three-dimensional T2-weighted fast asymmetric spin-echo imaging in the preoperative evaluation of cerebellopontine angle tumors.
    Hokamura M; Uetani H; Hamasaki T; Nakaura T; Morita K; Yamashita Y; Kitajima M; Sugitani A; Mukasa A; Hirai T
    Neuroradiology; 2024 Mar; ():. PubMed ID: 38480538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.