These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37661581)

  • 61. Graphene Oxide Wrapped CuV
    Liu Y; Li Q; Ma K; Yang G; Wang C
    ACS Nano; 2019 Oct; 13(10):12081-12089. PubMed ID: 31553172
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics.
    Zuo S; Xu X; Ji S; Wang Z; Liu Z; Liu J
    Chemistry; 2021 Jan; 27(3):830-860. PubMed ID: 32830335
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Scientific Challenges and Improvement Strategies of Zn-Based Anodes for Aqueous Zn-Ion Batteries.
    Liu Y; Li L; Ji X; Cheng S
    Chem Rec; 2022 Oct; 22(10):e202200114. PubMed ID: 35785428
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Editorial for focus on nanophase materials for next-generation lithium-ion batteries and beyond.
    Meng X; Chen Z; Li J; Harrison KL; Lu W; Sun X
    Nanotechnology; 2022 Jul; 33(41):. PubMed ID: 34730108
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
    Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y
    Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 70. One-dimensional H
    Duan W; Chen S; Li Y; Chen S; Zhao Y
    RSC Adv; 2023 Oct; 13(45):32023-32027. PubMed ID: 37920199
    [TBL] [Abstract][Full Text] [Related]  

  • 71. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries.
    Adhikari A; Chhetri K; Rai R; Acharya D; Kunwar J; Bhattarai RM; Jha RK; Kandel D; Kim HY; Kandel MR
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764640
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries.
    Chen S; Chen Q; Ma J; Wang J; Hui KS; Zhang J
    Small; 2022 Jun; 18(22):e2200168. PubMed ID: 35523732
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.
    Fu J; Cano ZP; Park MG; Yu A; Fowler M; Chen Z
    Adv Mater; 2017 Feb; 29(7):. PubMed ID: 27892635
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries.
    Tian Y; Chen S; Ding S; Chen Q; Zhang J
    Chem Sci; 2023 Jan; 14(2):331-337. PubMed ID: 36687356
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Iodine Redox Chemistry in Rechargeable Batteries.
    Ma J; Liu M; He Y; Zhang J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12636-12647. PubMed ID: 32939916
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges.
    Pavlovskii AA; Pushnitsa K; Kosenko A; Novikov P; Popovich AA
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614515
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Carbon-based composites for rechargeable zinc-air batteries: A mini review.
    Liu Y; Lu J; Xu S; Zhang W; Gao D
    Front Chem; 2022; 10():1074984. PubMed ID: 36465872
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries.
    Ou L; Ou H; Qin M; Liu Z; Fang G; Cao X; Liang S
    ChemSusChem; 2022 Oct; 15(19):e202201184. PubMed ID: 35934677
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Designing High Performance Organic Batteries.
    Chen Y; Wang C
    Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2020 Sep; 32(38):e2004240. PubMed ID: 32797719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.