These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 37661692)
1. Controllable-morphology polymer blend photonic metafoam for radiative cooling. Wang Y; Wang T; Liang J; Wu J; Yang M; Pan Y; Hou C; Liu C; Shen C; Tao G; Liu X Mater Horiz; 2023 Oct; 10(11):5060-5070. PubMed ID: 37661692 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
3. Daytime Radiative Cooling Coating Based on the Y Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077 [TBL] [Abstract][Full Text] [Related]
4. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044 [TBL] [Abstract][Full Text] [Related]
5. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Woo HY; Choi Y; Chung H; Lee DW; Paik T Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232 [TBL] [Abstract][Full Text] [Related]
6. Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling. Zhou L; Rada J; Zhang H; Song H; Mirniaharikandi S; Ooi BS; Gan Q Adv Sci (Weinh); 2021 Dec; 8(23):e2102502. PubMed ID: 34672111 [TBL] [Abstract][Full Text] [Related]
7. Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling. Saeed U; Altamimi MMS; Al-Turaif H Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732670 [TBL] [Abstract][Full Text] [Related]
8. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
9. High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure. Zhou J; Ding C; Zhang X; Li D; Yang D; You B; Wu L ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032275 [TBL] [Abstract][Full Text] [Related]
10. Superhydrophobic Composite Coatings Can Achieve Durability and Efficient Radiative Cooling of Energy-Saving Buildings. Zhou W; Ma X; Liu M; Niu J; Wang S; Li S; Wang W; Fan Y ACS Appl Mater Interfaces; 2024 Sep; 16(35):46703-46718. PubMed ID: 39177497 [TBL] [Abstract][Full Text] [Related]
11. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. Zhong H; Li Y; Zhang P; Gao S; Liu B; Wang Y; Meng T; Zhou Y; Hou H; Xue C; Zhao Y; Wang Z ACS Nano; 2021 Jun; 15(6):10076-10083. PubMed ID: 34014070 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912 [TBL] [Abstract][Full Text] [Related]
13. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling. Li L; Liu G; Zhang Q; Zhao H; Shi R; Wang C; Li Z; Zhou B; Zhang Y ACS Appl Mater Interfaces; 2024 Feb; 16(5):6504-6512. PubMed ID: 38267401 [TBL] [Abstract][Full Text] [Related]
14. Eliminating trade-offs between optical scattering and mechanical durability in aerogels as outdoor passive cooling metamaterials. Cai C; Chen Y; Ding C; Wei Z; Wang X Mater Horiz; 2024 Mar; 11(6):1502-1514. PubMed ID: 38230558 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired Polymer Films with Surface Ordered Pyramid Arrays and 3D Hierarchical Pores for Enhanced Passive Radiative Cooling. He J; Zhang Q; Zhou Y; Chen Y; Ge H; Tang S ACS Nano; 2024 Apr; 18(17):11120-11129. PubMed ID: 38626337 [TBL] [Abstract][Full Text] [Related]
16. Macro-Nanoporous Film with Cauliflower-Shaped Fibers for Highly Efficient Passive Daytime Radiative Cooling. Wei L; Li N; Liu H; Sun C; Chen A; Yang R; Qin Y; Bao H ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39360809 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management. Yang Z; Jia Y; Zhang J ACS Appl Mater Interfaces; 2022 Jun; 14(21):24755-24765. PubMed ID: 35580302 [TBL] [Abstract][Full Text] [Related]
18. Pyramid Textured Photonic Films with High-Refractive Index Fillers for Efficient Radiative Cooling. Fu Y; Chen L; Guo Y; Shi Y; Liu Y; Zeng Y; Lin Y; Luo D Adv Sci (Weinh); 2024 Oct; 11(39):e2404900. PubMed ID: 39159127 [TBL] [Abstract][Full Text] [Related]
19. Passive Daytime Radiative Cooling of Silica Aerogels. Ma B; Cheng Y; Hu P; Fang D; Wang J Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770428 [TBL] [Abstract][Full Text] [Related]
20. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]