These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37661692)

  • 21. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving.
    Li Y; Chen X; Yu L; Pang D; Yan H; Chen M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4122-4131. PubMed ID: 36642885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance simulation of polymer-based nanoparticle and void dispersed photonic structures for radiative cooling.
    Bijarniya JP; Sarkar J; Maiti P
    Sci Rep; 2021 Jan; 11(1):893. PubMed ID: 33441872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonic structures in radiative cooling.
    Lee M; Kim G; Jung Y; Pyun KR; Lee J; Kim BW; Ko SH
    Light Sci Appl; 2023 Jun; 12(1):134. PubMed ID: 37264035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible Daytime Radiative Cooling Enhanced by Enabling Three-Phase Composites with Scattering Interfaces between Silica Microspheres and Hierarchical Porous Coatings.
    Ma H; Wang L; Dou S; Zhao H; Huang M; Xu Z; Zhang X; Xu X; Zhang A; Yue H; Ali G; Zhang C; Zhou W; Li Y; Zhan Y; Huang C
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19282-19290. PubMed ID: 33866783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.
    Leroy A; Bhatia B; Kelsall CC; Castillejo-Cuberos A; Di Capua H M; Zhao L; Zhang L; Guzman AM; Wang EN
    Sci Adv; 2019 Oct; 5(10):eaat9480. PubMed ID: 31692957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic SiO
    Sun Y; He H; Huang X; Guo Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrawhite BaSO
    Li X; Peoples J; Yao P; Ruan X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures.
    Cai Y; Zhang Z; Yang Z; Fang Z; Chen S; Zhang X; Li W; Zhang Y; Zhang H; Sun Z; Zhang Y; Li Y; Liu L; Zhang W; Xue X
    Heliyon; 2023 Apr; 9(4):e14599. PubMed ID: 37089341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable, Patternable Glass-Infiltrated Ceramic Radiative Coolers for Energy-Saving Architectural Applications.
    Jeon SK; Kim JT; Kim MS; Kim IS; Park SJ; Jeong H; Lee GJ; Kim YJ
    Adv Sci (Weinh); 2023 Sep; 10(27):e2302701. PubMed ID: 37485641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating.
    Shi M; Song Z; Ni J; Du X; Cao Y; Yang Y; Wang W; Wang J
    ACS Nano; 2023 Feb; 17(3):2029-2038. PubMed ID: 36638216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchically Patterned Self-Cleaning Polymer Composites for Daytime Radiative Cooling.
    Zhou K; Yan X; Oh SJ; Padilla-Rivera G; Kim HA; Cropek DM; Miljkovic N; Cai L
    Nano Lett; 2023 May; 23(9):3669-3677. PubMed ID: 37079783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Superhydrophobic Poly(vinylidene fluoride-
    Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.