These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37661700)

  • 41. Freeze-thaw effects on metabolic enzymes in wood frog organs.
    Cowan KJ; Storey KB
    Cryobiology; 2001 Aug; 43(1):32-45. PubMed ID: 11812049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic cost of freeze-thaw and source of CO
    Smith A; Turnbull KF; Moulton JH; Sinclair BJ
    J Exp Biol; 2021 Jan; 224(Pt 1):. PubMed ID: 33144372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MicroRNA regulation in heart and skeletal muscle over the freeze-thaw cycle in the freeze tolerant wood frog.
    Bansal S; Luu BE; Storey KB
    J Comp Physiol B; 2016 Feb; 186(2):229-41. PubMed ID: 26660652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique.
    Wharton DA; Downes MF; Goodall G; Marshall CJ
    Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog.
    Storey KB; Bischof J; Rubinsky B
    Am J Physiol; 1992 Jul; 263(1 Pt 2):R185-94. PubMed ID: 1636785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica.
    Rehman S; Hadj-Moussa H; Hawkins L; Storey KB
    Cryobiology; 2023 Mar; 110():44-48. PubMed ID: 36539050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance.
    Larson DJ; Middle L; Vu H; Zhang W; Serianni AS; Duman J; Barnes BM
    J Exp Biol; 2014 Jun; 217(Pt 12):2193-200. PubMed ID: 24737762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-freeze recovery of peripheral nerve function in the freeze-tolerant wood frog, Rana sylvatica.
    Kling KB; Costanzo JP; Lee RE
    J Comp Physiol B; 1994; 164(4):316-20. PubMed ID: 7962786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura; Hylidae).
    Blem CR; Ragan CA; Scott LS
    Comp Biochem Physiol A Comp Physiol; 1986; 85(3):563-70. PubMed ID: 2878786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrophysiological and ultrastructural correlates of cryoinjury in sciatic nerve of the freeze-tolerant wood frog, Rana sylvatica.
    Costanzo JP; Allenspach AL; Lee RE
    J Comp Physiol B; 1999 Jul; 169(4-5):351-9. PubMed ID: 10466222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of ice recrystallization inhibition activity in the novel freeze-responsive protein Fr10 from freeze-tolerant wood frogs, Rana sylvatica.
    Le Tri D; Childers CL; Adam MK; Ben RN; Storey KB; Biggar KK
    J Therm Biol; 2019 Aug; 84():426-430. PubMed ID: 31466782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog.
    Storey JM; Li Z; Storey KB
    Cryobiology; 2023 Mar; 110():79-85. PubMed ID: 36442660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Status of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in liver and skin of the freeze tolerant wood frog.
    Douglas K; Logan SM; Storey KB
    Cryobiology; 2022 Oct; 108():27-33. PubMed ID: 36100073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular biology of freezing tolerance.
    Storey KB; Storey JM
    Compr Physiol; 2013 Jul; 3(3):1283-308. PubMed ID: 23897687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondria, metabolic control and microRNA: Advances in understanding amphibian freeze tolerance.
    Storey KB; Storey JM
    Biofactors; 2020 Mar; 46(2):220-228. PubMed ID: 31026112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae).
    Toxopeus J; McKinnon AH; Štětina T; Turnbull KF; Sinclair BJ
    J Insect Physiol; 2019; 113():9-16. PubMed ID: 30582905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organ-specific metabolism during freezing and thawing in a freeze-tolerant frog.
    Storey KB
    Am J Physiol; 1987 Aug; 253(2 Pt 2):R292-7. PubMed ID: 3618830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze tolerance in an arctic Alaska stonefly.
    Walters KR; Sformo T; Barnes BM; Duman JG
    J Exp Biol; 2009 Jan; 212(Pt 2):305-12. PubMed ID: 19112150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.
    Park JI; Grant CM; Attfield PV; Dawes IW
    Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.