These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37662103)

  • 1. Non-invasive transcranial alternating current stimulation of spatially resolved phosphenes.
    Sadrzadeh-Afsharazar F; Douplik A
    Front Neurosci; 2023; 17():1228326. PubMed ID: 37662103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Phosphenotron Device for Sensoric Spatial Resolution of Phosphenes within the Visual Field Using Non-Invasive Transcranial Alternating Current Stimulation.
    Sadrzadeh-Afsharazar F; Douplik A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS.
    Kvašňák E; Orendáčová M; Vránová J
    Physiol Res; 2022 Aug; 71(4):561-571. PubMed ID: 35770470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation.
    Evans ID; Palmisano S; Loughran SP; Legros A; Croft RJ
    Bioelectromagnetics; 2019 Sep; 40(6):365-374. PubMed ID: 31338856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction.
    Thiele C; Zaehle T; Haghikia A; Ruhnau P
    Sci Rep; 2021 Nov; 11(1):22245. PubMed ID: 34782626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes.
    Laakso I; Hirata A
    J Neural Eng; 2013 Aug; 10(4):046009. PubMed ID: 23813466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
    Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ
    Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.
    Sabel BA; Kresinsky A; Cardenas-Morales L; Haueisen J; Hunold A; Dannhauer M; Antal A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2133-2141. PubMed ID: 34648453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude modulating frequency overrides carrier frequency in tACS-induced phosphene percept.
    Hsu CY; Liu TL; Lee DH; Yeh DR; Chen YH; Liang WK; Juan CH
    Hum Brain Mapp; 2023 Feb; 44(3):914-926. PubMed ID: 36250439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for documenting phosphenes induced by transcranial magnetic stimulation.
    Elkin-Frankston S; Fried PJ; Pascual-Leone A; Rushmore RJ; Valero-Cabr A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20360672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.
    Schutter DJ
    Neuroimage; 2016 Oct; 140():83-8. PubMed ID: 26453929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
    Turi Z; Ambrus GG; Janacsek K; Emmert K; Hahn L; Paulus W; Antal A
    Restor Neurol Neurosci; 2013; 31(3):275-85. PubMed ID: 23478342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation.
    Evans ID; Palmisano S; Croft RJ
    Bioelectromagnetics; 2021 Feb; 42(2):146-158. PubMed ID: 33440463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin.
    Kar K; Krekelberg B
    J Neurophysiol; 2012 Oct; 108(8):2173-8. PubMed ID: 22855777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment.
    Gebrehiwot AN; Kato T; Nakazawa K
    PLoS One; 2021; 16(4):e0249996. PubMed ID: 33852643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject.
    Niketeghad S; Muralidharan A; Patel U; Dorn JD; Bonelli L; Greenberg RJ; Pouratian N
    J Neurosurg; 2019 May; 132(6):2000-2007. PubMed ID: 31151104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.