These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37662173)

  • 1. Effect of varying UAV height on the precise estimation of potato crop growth.
    Njane SN; Tsuda S; van Marrewijk BM; Polder G; Katayama K; Tsuji H
    Front Plant Sci; 2023; 14():1233349. PubMed ID: 37662173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the nitrogen content of potato plants based on morphological parameters and visible light vegetation indices.
    Fan Y; Feng H; Jin X; Yue J; Liu Y; Li Z; Feng Z; Song X; Yang G
    Front Plant Sci; 2022; 13():1012070. PubMed ID: 36330259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
    Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z
    Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices.
    Zhang Y; Han W; Niu X; Li G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment.
    Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S
    Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainability Trait Modeling of Field-Grown Switchgrass (
    Xu Y; Shrestha V; Piasecki C; Wolfe B; Hamilton L; Millwood RJ; Mazarei M; Stewart CN
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation.
    Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA
    Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding.
    Tattaris M; Reynolds MP; Chapman SC
    Front Plant Sci; 2016; 7():1131. PubMed ID: 27536304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput UAV Image-Based Method Is More Precise Than Manual Rating of Herbicide Tolerance.
    Duddu HSN; Johnson EN; Willenborg CJ; Shirtliffe SJ
    Plant Phenomics; 2019; 2019():6036453. PubMed ID: 33313532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.
    Li F; Piasecki C; Millwood RJ; Wolfe B; Mazarei M; Stewart CN
    Front Plant Sci; 2020; 11():574073. PubMed ID: 33193511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley.
    Rueda-Ayala VP; Peña JM; Höglind M; Bengochea-Guevara JM; Andújar D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region.
    Sapkota S; Paudyal DR
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping.
    Xu R; Li C; Paterson AH
    PLoS One; 2019; 14(2):e0205083. PubMed ID: 30811435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.