These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 37662432)

  • 1. The role of smart polymeric biomaterials in bone regeneration: a review.
    Xing Y; Qiu L; Liu D; Dai S; Sheu CL
    Front Bioeng Biotechnol; 2023; 11():1240861. PubMed ID: 37662432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimuli-Responsive Drug Release from Smart Polymers.
    Wells CM; Harris M; Choi L; Murali VP; Guerra FD; Jennings JA
    J Funct Biomater; 2019 Jul; 10(3):. PubMed ID: 31370252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration.
    Zhang K; Wang S; Zhou C; Cheng L; Gao X; Xie X; Sun J; Wang H; Weir MD; Reynolds MA; Zhang N; Bai Y; Xu HHK
    Bone Res; 2018; 6():31. PubMed ID: 30374416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration.
    Wei H; Cui J; Lin K; Xie J; Wang X
    Bone Res; 2022 Feb; 10(1):17. PubMed ID: 35197462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine.
    Gao Q; Lee JS; Kim BS; Gao G
    Int J Bioprint; 2023; 9(1):638. PubMed ID: 36636137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Orthopedic Biomaterials and Implants.
    Intravaia JT; Graham T; Kim HS; Nanda HS; Kumbar SG; Nukavarapu SP
    Curr Opin Biomed Eng; 2023 Mar; 25():. PubMed ID: 36642994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration.
    Wang D; Zhang X; Ng KW; Rao Y; Wang C; Gharaibeh B; Lin S; Abrams G; Safran M; Cheung E; Campbell P; Weiss L; Ker DFE; Yang YP
    Acta Biomater; 2022 Dec; 154():108-122. PubMed ID: 36272687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Smart Biomaterials for Tissue Engineering.
    Khan F; Tanaka M
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29267207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine.
    Amiryaghoubi N; Fathi M; Pesyan NN; Samiei M; Barar J; Omidi Y
    Med Res Rev; 2020 Sep; 40(5):1833-1870. PubMed ID: 32301138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration.
    Dixon DT; Gomillion CT
    J Biomed Mater Res B Appl Biomater; 2023 Jul; 111(7):1351-1364. PubMed ID: 36825765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING.
    Ogueri KS; Jafari T; Escobar Ivirico JL; Laurencin CT
    Regen Eng Transl Med; 2019 Jun; 5(2):128-154. PubMed ID: 31423461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional printed nanostructure biomaterials for bone tissue engineering.
    Marew T; Birhanu G
    Regen Ther; 2021 Dec; 18():102-111. PubMed ID: 34141834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology.
    Paltanea G; Manescu Paltanea V; Antoniac I; Antoniac A; Nemoianu IV; Robu A; Dura H
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect.
    Zhang Y; Wang C; Fu L; Ye S; Wang M; Zhou Y
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31035401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing.
    Castillo-Henríquez L; Castro-Alpízar J; Lopretti-Correa M; Vega-Baudrit J
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects.
    Belluomo R; Khodaei A; Amin Yavari S
    Acta Biomater; 2023 Jan; 156():234-249. PubMed ID: 36028198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.