BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37662599)

  • 1. Identification of altered metabolic functional components using metabolomics to analyze the different ages of fruiting bodies of
    Xu C; Zhao S; Li Z; Pan J; Zhou Y; Hu Q; Zou Y
    Front Nutr; 2023; 10():1197998. PubMed ID: 37662599
    [No Abstract]   [Full Text] [Related]  

  • 2. Widely targeted metabolomics analysis of
    Qi Y; Guo XY; Xu XY; Hou JX; Liu SL; Guo HB; Xu AG; Yang RH; Yu XD
    Front Microbiol; 2024; 15():1391558. PubMed ID: 38846565
    [No Abstract]   [Full Text] [Related]  

  • 3. Deep sequencing of the Sanghuangporus vaninii transcriptome reveals dynamic landscapes of candidate genes involved in the biosynthesis of active compounds.
    Zhou Q; Wang J; Jiang H; Wang G; Wang Y
    Arch Microbiol; 2021 Jul; 203(5):2315-2324. PubMed ID: 33646337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The First Whole Genome Sequencing of
    Jiang JH; Wu SH; Zhou LW
    J Fungi (Basel); 2021 Sep; 7(10):. PubMed ID: 34682209
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification and profiling of the community structure and potential function of bacteria from the fruiting bodies of Sanghuangporus vaninii.
    Ma YJ; Gao WQ; Zhu XT; Kong WB; Zhang F; Yang HQ
    Arch Microbiol; 2022 Aug; 204(9):564. PubMed ID: 35982255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metabolic profiling of mycelia, fermentation broth, spore powder and fruiting bodies of Ophiocordyceps gracilis by LC-MS/MS.
    Wang Y; Yang LH; Tong LL; Yuan L; Ren B; Guo DS
    Phytochem Anal; 2023 Dec; 34(8):984-996. PubMed ID: 37482969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a pathogen causing fruiting body rot of
    Yuan W; Ma L; Chen X; Song J; Chen Q
    PeerJ; 2023; 11():e15983. PubMed ID: 37692123
    [No Abstract]   [Full Text] [Related]  

  • 8. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway.
    Qiu P; Liu J; Zhao L; Zhang P; Wang W; Shou D; Ji J; Li C; Chai K; Dong Y
    Phytomedicine; 2022 Feb; 96():153852. PubMed ID: 35026508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-targeted metabonomics and transcriptomics revealed the mechanism of mulberry branch extracts promoting the growth of
    Huo J; Sun Y; Pan M; Ma H; Lin T; Lv Z; Li Y; Zhong S
    Front Microbiol; 2022; 13():1024987. PubMed ID: 36274698
    [No Abstract]   [Full Text] [Related]  

  • 10. Community composition and trophic mode diversity of fungi associated with fruiting body of medicinal Sanghuangporus vaninii.
    Ma Y; Gao W; Zhang F; Zhu X; Kong W; Niu S; Gao K; Yang H
    BMC Microbiol; 2022 Oct; 22(1):251. PubMed ID: 36261787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Safety evaluation of aqueous extracts of
    Huo J; Sun Y; Zhong S; Li Y; Yang R; Xia L; Wang J; Zhang M; Zhu J
    Food Sci Nutr; 2020 Sep; 8(9):5107-5113. PubMed ID: 32994971
    [No Abstract]   [Full Text] [Related]  

  • 12. The involvement of Th1 cell differentiation in the anti-tumor effect of purified polysaccharide from Sanghuangporus vaninii in colorectal cancer via multi-omics analysis.
    Qu Y; Yang H; Li S; Li L; Li Y; Wang D
    Int J Biol Macromol; 2023 May; 237():123927. PubMed ID: 36889619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-like RNA Functions Are Required for the Biosynthesis of Active Compounds in the Medicinal Fungus
    Zhou Q; Yin X; Zhang H; Wang Y
    Microbiol Spectr; 2022 Dec; 10(6):e0021922. PubMed ID: 36301126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of hispidin polyphenols from medicinal mushroom
    Yuan W; Yuan W; Zhou R; Lv G; Sun M; Zhao Y; Zheng W
    Chin Herb Med; 2023 Oct; 15(4):594-602. PubMed ID: 38094021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First genome assembly and annotation of
    Jin C; Ma JX; Wang H; Tang LX; Ye YF; Li X; Si J
    Front Cell Infect Microbiol; 2023; 13():1325418. PubMed ID: 38264724
    [No Abstract]   [Full Text] [Related]  

  • 16. Identifying Bioactive Ingredients and Antioxidant Activities of Wild
    Wang H; Ma JX; Wu DM; Gao N; Si J; Cui BK
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836356
    [No Abstract]   [Full Text] [Related]  

  • 17. Anti-gout activity and the interaction mechanisms between Sanghuangporus vaninii active components and xanthine oxidase.
    Song J; Wang Z; Chi Y; Zhang Y; Fang C; Shu Y; Cui J; Bai H; Wang J
    Bioorg Chem; 2023 Apr; 133():106394. PubMed ID: 36801789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Different Carbon and Nitrogen Ratios on Yield, Nutritional Value, and Amino Acid Contents of
    Han J; Sun R; Huang C; Xie H; Gao X; Yao Q; Yang P; Li J; Gong Z
    Life (Basel); 2024 May; 14(5):. PubMed ID: 38792619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1.
    Xia Y; Yang C; Liu X; Wang G; Xiong Z; Song X; Yang Y; Zhang H; Ai L
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2561-2572. PubMed ID: 34967056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome and Metabolome Integration Reveals the Impact of Fungal Elicitors on Triterpene Accumulation in
    Zhou L; Fu Y; Zhang X; Wang T; Wang G; Zhou L; Yu H; Tian X
    J Fungi (Basel); 2023 May; 9(6):. PubMed ID: 37367540
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.