BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37662599)

  • 21. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells.
    Wan X; Jin X; Xie M; Liu J; Gontcharov AA; Wang H; Lv R; Liu D; Wang Q; Li Y
    Int J Biol Macromol; 2020 Nov; 163():865-877. PubMed ID: 32629056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii.
    Wan X; Jin X; Wu X; Yang X; Lin D; Li C; Fu Y; Liu Y; Liu X; Lv J; Gontcharov AA; Yang H; Wang Q; Li Y
    Carbohydr Polym; 2022 Jan; 276():118798. PubMed ID: 34823804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of polysaccharide conditions and analysis of antioxidant capacity in the co-culture of
    Lu Y; Liu D
    PeerJ; 2024; 12():e17571. PubMed ID: 38938607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The complete mitochondrial genome of
    Song T; Xu F; Shen Y; Fan L; Cai W
    Mitochondrial DNA B Resour; 2021 Mar; 6(3):1096-1097. PubMed ID: 33796753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extraction, Purification, and Structural Characterization of Polysaccharides from
    Liu J; Song J; Gao F; Chen W; Zong Y; Li J; He Z; Du R
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Plasma metabolomics in a deep vein thrombosis rat model based on ultra-high performance liquid chromatography-electrostatic field orbitrap high resolution mass spectrometry].
    Gu Y; Zang P; Li J; Yan Y; Wang J
    Se Pu; 2022 Aug; 40(8):736-745. PubMed ID: 35903841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences.
    Shen S; Liu SL; Jiang JH; Zhou LW
    IMA Fungus; 2021 Apr; 12(1):10. PubMed ID: 33853671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Analysis of metabolite differences in skin between Clapp's Favorite and its mutant Red Clapp's Favorite through non-targeted metabolomics].
    Mu H; Ci Z; Aisajan M; Liang Y; Liu X; DU X; Yu Q; Li Q; Li Y
    Se Pu; 2021 Nov; 39(11):1203-1212. PubMed ID: 34677015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Similarities and differences of myocardial metabolic characteristics between HFpEF and HFrEF mice based on LC-MS/MS metabolomics].
    Zhang ZY; Feng XY; Wang ZH; Huang YZ; Yang WB; Zhang WJ; Zhou J; Yuan ZY
    Zhonghua Xin Xue Guan Bing Za Zhi; 2023 Jul; 51(7):722-730. PubMed ID: 37460426
    [No Abstract]   [Full Text] [Related]  

  • 30. [Pseudotargeted metabolomics analysis of pine pollen intervention in the liver of premature ovarian failure rats].
    Qu T; Chen Y; Yang C; Liu Q; Chen H; He Z; Wang Z; Chen J; Zeng M
    Se Pu; 2023 Jan; 41(1):47-57. PubMed ID: 36633076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis.
    Wang Y; Tong L; Yang L; Ren B; Guo D
    Phytochem Anal; 2024 Mar; 35(2):308-320. PubMed ID: 37779226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus.
    Zeng X; Ling H; Yang J; Chen J; Guo S
    Gene; 2018 Aug; 666():108-115. PubMed ID: 29738838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aqueous extracts of
    Yu T; Zhong S; Sun Y; Sun H; Chen W; Li Y; Zhu J; Lu L; Huo J
    Oncol Lett; 2021 Aug; 22(2):628. PubMed ID: 34267820
    [No Abstract]   [Full Text] [Related]  

  • 34. Quantitative Analysis of Flavonoids in Fruiting Bodies of
    Zhou Z; Deng Z; Liang S; Zou X; Teng Y; Wang W; Fu L
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae.
    Lu Y; Luo F; Cen K; Xiao G; Yin Y; Li C; Li Z; Zhan S; Zhang H; Wang C
    BMC Genomics; 2017 Aug; 18(1):668. PubMed ID: 28854898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining transcriptomics and metabolomics to reveal the underlying molecular mechanism of ergosterol biosynthesis during the fruiting process of Flammulina velutipes.
    Wang R; Ma P; Li C; Xiao L; Liang Z; Dong J
    BMC Genomics; 2019 Dec; 20(1):999. PubMed ID: 31856715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Characterization of Two Polysaccharides from Phellinus vaninii Ljup and their Cytotoxicity to Cancer Cell Lines.
    Jia X; Gao M; Li M; Wu Y; Zeng Y; Xu C
    Anticancer Agents Med Chem; 2018; 18(9):1356-1363. PubMed ID: 28901257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of
    Guohua X; Pan R; Bao R; Ge Y; Zhou C; Shen Y
    Pharmacogn Mag; 2017; 13(52):659-662. PubMed ID: 29200729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LC-MS/MS-based targeted amino acid metabolic profile of Auricularia cornea grown on pinecone substrate.
    Ye L; Zhang B; Zhou J; Yang X; Zhang X; Tan W; Li X
    Food Chem; 2024 Jan; 432():137247. PubMed ID: 37647707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics.
    Yang Y; Yang J; Wang H; Jin Y; Liu J; Jia R; Wang Z; Kang Z
    Arch Microbiol; 2021 Dec; 204(1):98. PubMed ID: 34964905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.