BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37662896)

  • 1. LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems.
    Torresani M; Rocchini D; Alberti A; Moudrý V; Heym M; Thouverai E; Kacic P; Tomelleri E
    Ecol Inform; 2023 Sep; 76():102082. PubMed ID: 37662896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach.
    Torresani M; Rocchini D; Ceola G; de Vries JPR; Feilhauer H; Moudrý V; Bartholomeus H; Perrone M; Anderle M; Gamper HA; Chieffallo L; Guatelli E; Gatti RC; Kleijn D
    Sci Rep; 2024 Jan; 14(1):809. PubMed ID: 38191639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy.
    Francini S; D'Amico G; Vangi E; Borghi C; Chirici G
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of forest canopy closure in northwest Yunnan based on multi-source remote sensing data colla-boration.
    Zhou WW; Shu QT; Wang SW; Yang ZD; Luo SL; Xu L; Xiao JN
    Ying Yong Sheng Tai Xue Bao; 2023 Jul; 34(7):1806-1816. PubMed ID: 37694464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modeling.
    Ma L; Hurtt G; Tang H; Lamb R; Lister A; Chini L; Dubayah R; Armston J; Campbell E; Duncanson L; Healey S; O'Neil-Dunne J; Ott L; Poulter B; Shen Q
    Glob Chang Biol; 2023 Jun; 29(12):3378-3394. PubMed ID: 37013906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can tree species diversity be assessed with Landsat data in a temperate forest?
    Arekhi M; Yılmaz OY; Yılmaz H; Akyüz YF
    Environ Monit Assess; 2017 Oct; 189(11):586. PubMed ID: 29080961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for modeling forest canopy height and cover from multi-sensor data in Northwestern Ethiopia.
    Chere Z; Zewdie W; Biru D
    Environ Monit Assess; 2023 Nov; 195(12):1452. PubMed ID: 37947956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of Dense Airborne LiDAR and Multispectral Sentinel-2 and Pleiades Satellite Imagery for Mapping Riparian Forest Species Biodiversity at Tree Level.
    Njimi H; Chehata N; Revers F
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.
    Fricker GA; Wolf JA; Saatchi SS; Gillespie TW
    Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India.
    Musthafa M; Singh G; Kumar P
    Environ Monit Assess; 2022 Nov; 195(1):71. PubMed ID: 36331684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-resolution canopy height model of the Earth.
    Lang N; Jetz W; Schindler K; Wegner JD
    Nat Ecol Evol; 2023 Nov; 7(11):1778-1789. PubMed ID: 37770546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth Engine.
    Jafarzadeh H; Mahdianpari M; Gill EW; Mohammadimanesh F
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping global mangrove canopy height by integrating Ice, Cloud, and Land Elevation Satellite-2 photon-counting LiDAR data with multi-source images.
    Yu J; Nie S; Liu W; Zhu X; Sun Z; Li J; Wang C; Xi X; Fan H
    Sci Total Environ; 2024 Aug; 939():173487. PubMed ID: 38810758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series.
    Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH
    Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data.
    Kanmegne Tamga D; Latifi H; Ullmann T; Baumhauer R; Bayala J; Thiel M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach.
    Kamoske AG; Dahlin KM; Serbin SP; Stark SC
    Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.
    Levick SR; Hessenmöller D; Schulze ED
    Carbon Balance Manag; 2016 Dec; 11(1):7. PubMed ID: 27330548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.