BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37662956)

  • 1. Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow.
    Holmström MO; Andersen M; Traynor S; Ahmad SM; Lisle TL; Handlos Grauslund J; Skov V; Kjær L; Ottesen JT; Gjerstorff MF; Hasselbalch HC; Andersen MH
    Front Immunol; 2023; 14():1240678. PubMed ID: 37662956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy.
    Holmström MO; Martinenaite E; Ahmad SM; Met Ö; Friese C; Kjær L; Riley CH; Thor Straten P; Svane IM; Hasselbalch HC; Andersen MH
    Leukemia; 2018 Feb; 32(2):429-437. PubMed ID: 28676668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With
    Handlos Grauslund J; Holmström MO; Jørgensen NG; Klausen U; Weis-Banke SE; El Fassi D; Schöllkopf C; Clausen MB; Gjerdrum LMR; Breinholt MF; Kjeldsen JW; Hansen M; Koschmieder S; Chatain N; Novotny GW; Petersen J; Kjær L; Skov V; Met Ö; Svane IM; Hasselbalch HC; Andersen MH
    Front Oncol; 2021; 11():637420. PubMed ID: 33718228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine.
    Gigoux M; Holmström MO; Zappasodi R; Park JJ; Pourpe S; Bozkus CC; Mangarin LMB; Redmond D; Verma S; Schad S; George MM; Venkatesh D; Ghosh A; Hoyos D; Molvi Z; Kamaz B; Marneth AE; Duke W; Leventhal MJ; Jan M; Ho VT; Hobbs GS; Knudsen TA; Skov V; Kjær L; Larsen TS; Hansen DL; Lindsley RC; Hasselbalch H; Grauslund JH; Lisle TL; Met Ö; Wilkinson P; Greenbaum B; Sepulveda MA; Chan T; Rampal R; Andersen MH; Abdel-Wahab O; Bhardwaj N; Wolchok JD; Mullally A; Merghoub T
    Sci Transl Med; 2022 Jun; 14(649):eaba4380. PubMed ID: 35704596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms.
    Cimen Bozkus C; Roudko V; Finnigan JP; Mascarenhas J; Hoffman R; Iancu-Rubin C; Bhardwaj N
    Cancer Discov; 2019 Sep; 9(9):1192-1207. PubMed ID: 31266769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals.
    Holmström MO; Ahmad SM; Klausen U; Bendtsen SK; Martinenaite E; Riley CH; Svane IM; Kjær L; Skov V; Ellervik C; Pallisgaard N; Hasselbalch HC; Andersen MH
    Blood Cancer J; 2019 Jan; 9(2):8. PubMed ID: 30655510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer.
    Holmström MO; Cordua S; Skov V; Kjær L; Pallisgaard N; Ellervik C; Hasselbalch HC; Andersen MH
    Cancer Immunol Immunother; 2020 Feb; 69(2):315-324. PubMed ID: 31915854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
    Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM
    Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
    Elf S; Abdelfattah NS; Chen E; Perales-Patón J; Rosen EA; Ko A; Peisker F; Florescu N; Giannini S; Wolach O; Morgan EA; Tothova Z; Losman JA; Schneider RK; Al-Shahrour F; Mullally A
    Cancer Discov; 2016 Apr; 6(4):368-81. PubMed ID: 26951227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calreticulin haploinsufficiency augments stem cell activity and is required for onset of myeloproliferative neoplasms in mice.
    Shide K; Kameda T; Kamiunten A; Ozono Y; Tahira Y; Yokomizo-Nakano T; Kubota S; Ono M; Ikeda K; Sekine M; Akizuki K; Nakamura K; Hidaka T; Kubuki Y; Iwakiri H; Hasuike S; Nagata K; Sashida G; Shimoda K
    Blood; 2020 Jul; 136(1):106-118. PubMed ID: 32219445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation specific immunohistochemistry is highly specific for the presence of calreticulin mutations in myeloproliferative neoplasms.
    Andrici J; Farzin M; Clarkson A; Sioson L; Sheen A; Watson N; Toon CW; Koleth M; Stevenson W; Gill AJ
    Pathology; 2016 Jun; 48(4):319-24. PubMed ID: 27114372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial.
    Grauslund JH; Holmström MO; Martinenaite E; Lisle TL; Glöckner HJ; El Fassi D; Klausen U; Mortensen REJ; Jørgensen N; Kjær L; Skov V; Svane IM; Hasselbalch HC; Andersen MH
    Front Immunol; 2023; 14():1117466. PubMed ID: 36911725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transduction-Transplantation Mouse Model of Myeloproliferative Neoplasm.
    Nguyen TK; Morse SJ; Fleischman AG
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of calreticulin mutations in myeloproliferative neoplasms.
    Araki M; Komatsu N
    Int J Hematol; 2020 Feb; 111(2):200-205. PubMed ID: 31848992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
    Edahiro Y; Araki M; Komatsu N
    Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion.
    Han L; Schubert C; Köhler J; Schemionek M; Isfort S; Brümmendorf TH; Koschmieder S; Chatain N
    J Hematol Oncol; 2016 May; 9(1):45. PubMed ID: 27177927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Detection of CALR-Mutated Cells in Myeloproliferative Neoplasm-Related Glomerulopathy With Interstitial Extramedullary Hematopoiesis: A Case Report.
    Maruyama K; Nakagawa N; Suzuki A; Kabara M; Matsuki M; Shindo M; Iwasaki S; Ogawa Y; Hasebe N
    Am J Kidney Dis; 2019 Dec; 74(6):844-848. PubMed ID: 31377025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAL2 Immunohistochemical Staining Accurately Identifies CALR Mutations in Myeloproliferative Neoplasms.
    Nomani L; Bodo J; Zhao X; Durkin L; Loghavi S; Hsi ED
    Am J Clin Pathol; 2016 Oct; 146(4):431-8. PubMed ID: 27686170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mutant calreticulin and the molecular mechanisms in development of myeloproliferative neoplasms].
    Araki M
    Rinsho Ketsueki; 2020; 61(8):937-944. PubMed ID: 32908058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.