These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37663065)

  • 1. Electrohydrodynamic convection instabilities observed in suspensions of cellulose nanocrystals.
    Frka-Petesic B; Jean B; Heux L
    Cellulose (Lond); 2023; 30(13):8311-8323. PubMed ID: 37663065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields.
    Frka-Petesic B; Radavidson H; Jean B; Heux L
    Adv Mater; 2017 Mar; 29(11):. PubMed ID: 28112444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying.
    Frka-Petesic B; Kamita G; Guidetti G; Vignolini S
    Phys Rev Mater; 2019 Apr; 3(4):. PubMed ID: 33225202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterned electroconvective states in a bent-core nematic liquid crystal.
    Tadapatri P; Hiremath US; Yelamaggad CV; Krishnamurthy KS
    J Phys Chem B; 2010 Jan; 114(1):10-21. PubMed ID: 20000827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.
    Takahashi K; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012502. PubMed ID: 25122319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the cholesteric pitch of apolar cellulose nanocrystal suspensions using a chiral hard-bundle model.
    Chiappini M; Dussi S; Frka-Petesic B; Vignolini S; Dijkstra M
    J Chem Phys; 2022 Jan; 156(1):014904. PubMed ID: 34998357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical prediction of transient electrohydrodynamic instabilities under an alternating current electric field and unipolar injection.
    Zhou CT; Yao ZZ; Chen DL; Luo K; Wu J; Yi HL
    Heliyon; 2023 Jan; 9(1):e12812. PubMed ID: 36699279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nematic to Cholesteric Transformation in the Cellulose Nanocrystal Droplet Phase.
    Joynul Abedin M; van der Schoot P; Garnier G; Majumder M
    Langmuir; 2023 May; 39(17):6142-6150. PubMed ID: 37022793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields.
    Low J; Hogan SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041706. PubMed ID: 18999444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal cholesteric liquid crystal in spherical confinement.
    Li Y; Jun-Yan Suen J; Prince E; Larin EM; Klinkova A; Thérien-Aubin H; Zhu S; Yang B; Helmy AS; Lavrentovich OD; Kumacheva E
    Nat Commun; 2016 Aug; 7():12520. PubMed ID: 27561545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady state-Hopf mode interactions at the onset of electroconvection in the nematic liquid crystal Phase V.
    Acharya G; Dangelmayr G; Gleeson J; Oprea I
    Int J Mol Sci; 2011; 12(7):4488-503. PubMed ID: 21845092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamic instabilities in microchannels with time periodic forcing.
    Boy DA; Storey BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026304. PubMed ID: 17930139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonstandard electroconvection in a bent-core nematic liquid crystal.
    Wiant D; Gleeson JT; Eber N; Fodor-Csorba K; Jákli A; Tóth-Katona T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041712. PubMed ID: 16383407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats.
    Song W; Liu D; Prempeh N; Song R
    Biomacromolecules; 2017 Oct; 18(10):3273-3279. PubMed ID: 28925690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions.
    Beck-Candanedo S; Roman M; Gray DG
    Biomacromolecules; 2005; 6(2):1048-54. PubMed ID: 15762677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure Evolution and Drying Dynamics in Sliding Cholesteric Cellulose Nanocrystals.
    Chu G; Vilensky R; Vasilyev G; Martin P; Zhang R; Zussman E
    J Phys Chem Lett; 2018 Apr; 9(8):1845-1851. PubMed ID: 29584431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals.
    Elazzouzi-Hafraoui S; Putaux JL; Heux L
    J Phys Chem B; 2009 Aug; 113(32):11069-75. PubMed ID: 19719262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.
    Krekhov A; Decker W; Pesch W; Eber N; Salamon P; Fekete B; Buka A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052507. PubMed ID: 25353815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.