These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37663465)
1. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics. Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465 [TBL] [Abstract][Full Text] [Related]
2. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging. Ji H; Zhou J; Liang M; Lu H; Li M Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764 [TBL] [Abstract][Full Text] [Related]
3. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles. Liu J; Chen H; Ji H; Li M ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145 [TBL] [Abstract][Full Text] [Related]
4. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications. Yoon JW; Back JH Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139 [TBL] [Abstract][Full Text] [Related]
5. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste. Li J; Yu X; Shi T; Cheng C; Fan J; Cheng S; Liao G; Tang Z Nanoscale Res Lett; 2017 Dec; 12(1):255. PubMed ID: 28384997 [TBL] [Abstract][Full Text] [Related]
6. Ag-Sn bimetallic nanoparticles paste for high temperature service in power devices. Yu F; Wang K; Liu J; Fu X; Chen H; Li M Nanotechnology; 2020 Aug; 31(34):345204. PubMed ID: 32403094 [TBL] [Abstract][Full Text] [Related]
7. A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles. Yang G; Luo S; Lai T; Lai H; Luo B; Li Z; Zhang Y; Cui C Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407182 [TBL] [Abstract][Full Text] [Related]
8. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections. Lu YC; Liao WH; Wu TJ; Yasuda K; Song JM Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500864 [TBL] [Abstract][Full Text] [Related]
9. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste. Shen X; Li J; Xi S Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234479 [TBL] [Abstract][Full Text] [Related]
10. A Novel Preparation of Ag Agglomerates Paste with Unique Sintering Behavior at Low Temperature. Li J; Xu Y; Meng Y; Yin Z; Zhao X; Wang Y; Suga T Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066359 [TBL] [Abstract][Full Text] [Related]
11. Green synthesis of novel Zhang Y; Liu Q; Liu Y; Tong J; Huang Z; Wu S; Liang P; Yang G; Cui C Nanotechnology; 2022 Apr; 33(28):. PubMed ID: 35030550 [TBL] [Abstract][Full Text] [Related]
12. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295 [TBL] [Abstract][Full Text] [Related]
13. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging. Yan J Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917295 [TBL] [Abstract][Full Text] [Related]
14. A Multilayer Paste Based on Ag Nanoparticles with Cu@Sn for Die Attachment in Power Device Packaging. Wang J; Wang X; Zhang L; Zhang L; Duan F; Wang F; Zhang W; Wang J; Zhang Z; Hang C; Chen H Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160861 [TBL] [Abstract][Full Text] [Related]
15. Development of Ag-In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices. Tsai CH; Huang WC; Kao CR Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207937 [TBL] [Abstract][Full Text] [Related]
16. Bonding Behavior and Quality of Pressureless Ag Sintering on (111)-Oriented Nanotwinned Cu Substrate in Ambient Air. Huang X; He W; Liang J; Yang HK; Zhou C; Liu ZQ Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274812 [TBL] [Abstract][Full Text] [Related]
17. Patterning Ag nanoparticles by selective wetting for fine size Cu-Ag-Cu bonding. Liang Q; Li J; Li T; Liao G; Tang Z; Shi T Nanotechnology; 2020 Aug; 31(35):355302. PubMed ID: 32422626 [TBL] [Abstract][Full Text] [Related]
18. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. Li M; Xiao Y; Zhang Z; Yu J ACS Appl Mater Interfaces; 2015 May; 7(17):9157-68. PubMed ID: 25890996 [TBL] [Abstract][Full Text] [Related]
19. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics. Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Cu@Sn TLPS joint for high temperature power electronics application. Zhang H; Xu H; Liu X; Xu J RSC Adv; 2022 Oct; 12(45):29063-29069. PubMed ID: 36320725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]