These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37663485)
1. Antibacterial Efficacy of Green Synthesized Silver Nanoparticles Using Dilbar S; Sher H; Ali H; Ullah R; Ali A; Ullah Z ACS Omega; 2023 Aug; 8(34):31155-31167. PubMed ID: 37663485 [No Abstract] [Full Text] [Related]
2. Green Synthesis of Silver Nanoparticles Using Arif M; Ullah R; Ahmad M; Ali A; Ullah Z; Ali M; Al-Joufi FA; Zahoor M; Sher H Molecules; 2022 May; 27(11):. PubMed ID: 35684463 [TBL] [Abstract][Full Text] [Related]
3. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Cheng HJ; Wang H; Zhang JZ Front Microbiol; 2020; 11():2110. PubMed ID: 33042038 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesized silver nanoparticles using Ahmad M; Ali A; Ullah Z; Sher H; Dai DQ; Ali M; Iqbal J; Zahoor M; Ali I Front Bioeng Biotechnol; 2022; 10():988607. PubMed ID: 36159677 [TBL] [Abstract][Full Text] [Related]
5. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381 [TBL] [Abstract][Full Text] [Related]
6. Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Rather MA; Deori PJ; Gupta K; Daimary N; Deka D; Qureshi A; Dutta TK; Joardar SN; Mandal M Chemosphere; 2022 Aug; 300():134497. PubMed ID: 35398470 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and antibacterial potential of Loranthus pulverulentus conjugated silver nanoparticles. Subhani MA; Irshad M; Nazir A; Hafeez M; Ali S Microsc Res Tech; 2022 Nov; 85(11):3530-3540. PubMed ID: 35861158 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and antibacterial activity of solanum torvum mediated silver nanoparticle against Xxanthomonas axonopodis pv.punicae and Ralstonia solanacearum. Vanti GL; Kurjogi M; Basavesha KN; Teradal NL; Masaphy S; Nargund VB J Biotechnol; 2020 Feb; 309():20-28. PubMed ID: 31863800 [TBL] [Abstract][Full Text] [Related]
9. Enhanced suppression of soil-borne phytopathogenic bacteria Ralstonia solanacearum in soil and promotion of tomato plant growth by synergetic effect of green synthesized nanoparticles and plant extract. Guo Y; Khan RAA; Xiong Y; Fan Z J Appl Microbiol; 2022 May; 132(5):3694-3704. PubMed ID: 35064994 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. Dube P; Meyer S; Madiehe A; Meyer M Nanotechnology; 2020 Dec; 31(50):505607. PubMed ID: 33021215 [TBL] [Abstract][Full Text] [Related]
11. Biogenic synthesis of silver nanoparticles using Khan A; Ahmad N; Fazal H; Ali M; Akbar F; Khan I; Tayyab M; Uddin MN; Ahmad N; Abdel-Maksoud MA; Saleh IA; Zomot N; AbdElgawad H; Rauf K; Iqbal B; Teixeira Filho MCM; El-Tayeb MA; Jalal A RSC Adv; 2024 Feb; 14(9):5754-5763. PubMed ID: 38362085 [TBL] [Abstract][Full Text] [Related]
12. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Ashraf H; Anjum T; Riaz S; Naseem S Front Microbiol; 2020; 11():238. PubMed ID: 32210928 [TBL] [Abstract][Full Text] [Related]
13. Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Alam T; Khan RAA; Ali A; Sher H; Ullah Z; Ali M Mater Sci Eng C Mater Biol Appl; 2019 May; 98():101-108. PubMed ID: 30812984 [TBL] [Abstract][Full Text] [Related]
14. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Kumar VA; Ammani K; Jobina R; Subhaswaraj P; Siddhardha B J Photochem Photobiol B; 2017 Jun; 171():1-8. PubMed ID: 28460330 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Chinnasamy G; Chandrasekharan S; Koh TW; Bhatnagar S Front Microbiol; 2021; 12():611560. PubMed ID: 33679635 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Khan M; Khan AU; Bogdanchikova N; Garibo D Molecules; 2021 Apr; 26(9):. PubMed ID: 33922577 [TBL] [Abstract][Full Text] [Related]
17. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Roni M; Murugan K; Panneerselvam C; Subramaniam J; Hwang JS Parasitol Res; 2013 Mar; 112(3):981-90. PubMed ID: 23239092 [TBL] [Abstract][Full Text] [Related]
19. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Subarani S; Sabhanayakam S; Kamaraj C Parasitol Res; 2013 Feb; 112(2):487-99. PubMed ID: 23064800 [TBL] [Abstract][Full Text] [Related]
20. Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt. Santiago TR; Bonatto CC; Rossato M; Lopes CAP; Lopes CA; G Mizubuti ES; Silva LP J Sci Food Agric; 2019 Jul; 99(9):4248-4259. PubMed ID: 30801730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]