These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption. Qi C; Zhu YJ; Chen F ACS Appl Mater Interfaces; 2014 Mar; 6(6):4310-20. PubMed ID: 24568728 [TBL] [Abstract][Full Text] [Related]
6. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Trushina DB; Borodina TN; Belyakov S; Antipina MN Mater Today Adv; 2022 Jun; 14():100214. PubMed ID: 36785703 [TBL] [Abstract][Full Text] [Related]
7. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications. Ma X; Zhang X; Yang L; Wang G; Jiang K; Wu G; Cui W; Wei Z Nanoscale; 2016 Apr; 8(16):8687-95. PubMed ID: 27049523 [TBL] [Abstract][Full Text] [Related]
8. Oxygen Barrier and Thermomechanical Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites Reinforced with Calcium Carbonate Particles. Kirboga S; Öner M Acta Chim Slov; 2020 Mar; 67(1):137-150. PubMed ID: 33558918 [TBL] [Abstract][Full Text] [Related]
9. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Tong H; Ma W; Wang L; Wan P; Hu J; Cao L Biomaterials; 2004 Aug; 25(17):3923-9. PubMed ID: 15020169 [TBL] [Abstract][Full Text] [Related]
10. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption. Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J Small; 2014 May; 10(10):2047-56. PubMed ID: 24578276 [TBL] [Abstract][Full Text] [Related]
11. Difference in cadmium chemisorption on calcite and vaterite porous particles. Sasamoto R; Kanda Y; Yamanaka S Chemosphere; 2022 Jun; 297():134057. PubMed ID: 35227751 [TBL] [Abstract][Full Text] [Related]
12. In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property. Yang T; Wan Z; Liu Z; Li H; Wang H; Lu N; Chen Z; Mei X; Ren X Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():384-92. PubMed ID: 27040233 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of manganese phosphate hybrid nanoflowers by collagen-templated biomineralization. Munyemana JC; He H; Ding S; Yin J; Xi P; Xiao J RSC Adv; 2018 Jan; 8(5):2708-2713. PubMed ID: 35541456 [TBL] [Abstract][Full Text] [Related]
14. Exploiting Benefits of Vaterite Metastability to Design Degradable Systems for Biomedical Applications. Svenskaya Y; Pallaeva T Pharmaceutics; 2023 Nov; 15(11):. PubMed ID: 38004553 [TBL] [Abstract][Full Text] [Related]
15. Control of Polymorph Selection in Amorphous Calcium Carbonate Crystallization by Poly(Aspartic Acid): Two Different Mechanisms. Zou Z; Bertinetti L; Politi Y; Fratzl P; Habraken WJEM Small; 2017 Jun; 13(21):. PubMed ID: 28378921 [TBL] [Abstract][Full Text] [Related]
17. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. Fadia P; Tyagi S; Bhagat S; Nair A; Panchal P; Dave H; Dang S; Singh S 3 Biotech; 2021 Nov; 11(11):457. PubMed ID: 34631356 [TBL] [Abstract][Full Text] [Related]
18. Characterization of calcium carbonate crystals in pigeon yolk sacs with different incubation times. Song J; Cheng H; Shen X; Hu J; Tong H Micron; 2014 May; 60():39-48. PubMed ID: 24602270 [TBL] [Abstract][Full Text] [Related]
19. Properties of amorphous calcium carbonate and the template action of vaterite spheres. Shen Q; Wei H; Zhou Y; Huang Y; Yang H; Wang D; Xu D J Phys Chem B; 2006 Feb; 110(7):2994-3000. PubMed ID: 16494300 [TBL] [Abstract][Full Text] [Related]
20. Phase and morphology of calcium carbonate precipitated by rapid mixing in the absence of additives. Song K; Bang JH; Chae SC; Kim J; Lee SW RSC Adv; 2022 Jun; 12(30):19340-19349. PubMed ID: 35865589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]