These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37663589)
61. Responses of macroinvertebrate assemblages to environmental variations in the river-oxbow lake system of the Zoige wetland (Bai River, Qinghai-Tibet Plateau). Zhou X; Xu M; Wang Z; Yu B; Shao X Sci Total Environ; 2019 Apr; 659():150-160. PubMed ID: 30597465 [TBL] [Abstract][Full Text] [Related]
62. Allochthony, fatty acid and mercury trends in muscle of Eurasian perch (Perca fluviatilis) along boreal environmental gradients. Keva O; Kiljunen M; Hämäläinen H; Jones RI; Kahilainen KK; Kankaala P; Laine MB; Schilder J; Strandberg U; Vesterinen J; Taipale SJ Sci Total Environ; 2022 Sep; 838(Pt 1):155982. PubMed ID: 35588838 [TBL] [Abstract][Full Text] [Related]
63. Eutrophication effect on production and transfer of omega-3 fatty acids in boreal lake food webs. Calderini ML; Kahilainen KK; Estlander S; Peltomaa E; Piro AJ; Rigaud C; Ruuhijärvi J; Salmi P; Vesterinen J; Vuorio K; Taipale SJ Sci Total Environ; 2023 Dec; 903():166674. PubMed ID: 37647960 [TBL] [Abstract][Full Text] [Related]
64. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes. Cooper RN; Wissel B Aquat Biosyst; 2012 Nov; 8(1):29. PubMed ID: 23186395 [TBL] [Abstract][Full Text] [Related]
65. Ciliate communities of a large shallow lake: association with macrophyte beds. Karus K; Feldmann T; Nõges P; Zingel P Eur J Protistol; 2014 Aug; 50(4):382-94. PubMed ID: 25129837 [TBL] [Abstract][Full Text] [Related]
66. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476 [TBL] [Abstract][Full Text] [Related]
67. Mussels can both outweigh and interact with the effects of terrestrial to freshwater resource subsidies on littoral benthic communities. Smith BR; Aldridge DC; Tanentzap AJ Sci Total Environ; 2018 May; 622-623():49-56. PubMed ID: 29202368 [TBL] [Abstract][Full Text] [Related]
68. Invertebrates are declining in boreal aquatic habitat: The effect of brownification? Arzel C; Nummi P; Arvola L; Pöysä H; Davranche A; Rask M; Olin M; Holopainen S; Viitala R; Einola E; Manninen-Johansen S Sci Total Environ; 2020 Jul; 724():138199. PubMed ID: 32408448 [TBL] [Abstract][Full Text] [Related]
69. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition. Lento J; Dillon PJ; Somers KM Environ Monit Assess; 2012 Dec; 184(12):7175-87. PubMed ID: 22193633 [TBL] [Abstract][Full Text] [Related]
70. Nutrient availability modifies species abundance and community structure of Fucus-associated littoral benthic fauna. Korpinen S; Jormalainen V; Pettay E Mar Environ Res; 2010; 70(3-4):283-92. PubMed ID: 20691336 [TBL] [Abstract][Full Text] [Related]
71. Effects of Multiple Environmental Stressors on Zoobenthos Communities in Shallow Lakes: Evidence from a Mesocosm Experiment. Xu X; Su G; Zhang P; Wang T; Zhao K; Zhang H; Huang J; Wang H; Kong X; Xu J; Zhang M Animals (Basel); 2023 Dec; 13(23):. PubMed ID: 38067073 [TBL] [Abstract][Full Text] [Related]
72. Diet influence on mercury bioaccumulation as revealed by polyunsaturated fatty acids in zoobenthos from two contrasting environments: Chinese reservoirs and Swedish lakes. Jing M; Lin D; Wu P; Kainz MJ; Bishop K; Yan H; Li Q; Feng X Sci Total Environ; 2021 Aug; 782():146410. PubMed ID: 33839663 [TBL] [Abstract][Full Text] [Related]
73. [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Qu XD; Yu Y; Zhang M; Duan LF; Peng WQ Huan Jing Ke Xue; 2018 Feb; 39(2):783-791. PubMed ID: 29964842 [TBL] [Abstract][Full Text] [Related]
74. Denitrification and benthic metabolism in lowland pit lakes: The role of trophic conditions. Nizzoli D; Welsh DT; Viaroli P Sci Total Environ; 2020 Feb; 703():134804. PubMed ID: 31757540 [TBL] [Abstract][Full Text] [Related]
75. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. Wang H; García Molinos J; Heino J; Zhang H; Zhang P; Xu J Environ Int; 2021 Aug; 153():106494. PubMed ID: 33882434 [TBL] [Abstract][Full Text] [Related]
76. Anthropogenic Eutrophication Drives Major Food Web Changes in Mwanza Gulf, Lake Victoria. King L; Wienhues G; Misra P; Tylmann W; Lami A; Bernasconi SM; Jaggi M; Courtney-Mustaphi C; Muschick M; Ngoepe N; Mwaiko S; Kishe MA; Cohen A; Heiri O; Seehausen O; Vogel H; Grosjean M; Matthews B Ecosystems; 2024; 27(4):577-591. PubMed ID: 38899133 [TBL] [Abstract][Full Text] [Related]
77. Seasonal Patterns of Phytoplankton Taxon Richness in Lakes: Effects of Temperature, Turnover and Abundance. Maberly SC; Chao A; Finlay BJ Protist; 2022 Dec; 173(6):125925. PubMed ID: 36343516 [TBL] [Abstract][Full Text] [Related]
78. Catchment-scale urbanization diminishes effects of habitat complexity on instream macroinvertebrate assemblages. White JY; Walsh CJ Ecol Appl; 2020 Dec; 30(8):e02199. PubMed ID: 32585064 [TBL] [Abstract][Full Text] [Related]
79. Comparing effects of lake- and watershed-scale influences on communities of aquatic invertebrates in shallow lakes. Hanson MA; Herwig BR; Zimmer KD; Fieberg J; Vaughn SR; Wright RG; Younk JA PLoS One; 2012; 7(9):e44644. PubMed ID: 22970275 [TBL] [Abstract][Full Text] [Related]
80. The influence of macrophyte ecological groups on food web components of temperate freshwater lakes. Karus K; Zagars M; Agasild H; Tuvikene A; Zingel P; Puncule L; Medne-Peipere M; Feldmann T Aquat Bot; 2022 Dec; 183():None. PubMed ID: 36466371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]