These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37663618)

  • 1. Interaction pathways of implant metal localized corrosion and macrophage inflammatory reactions.
    Li M; Wu J; Geng W; Gao P; Yang Y; Li X; Xu K; Liao Q; Cai K
    Bioact Mater; 2024 Jan; 31():355-367. PubMed ID: 37663618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of localized corrosion of 316L stainless steel on osteogenic differentiation of bone morrow derived mesenchymal stem cells.
    Li M; Wu J; Geng W; Yang Y; Li X; Xu K; Li K; Li Y; Duan Q; Gao P; Cai K
    Biomaterials; 2023 Oct; 301():122262. PubMed ID: 37542857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV; Vidvans AN; Chaudhari GP; Udainiya S
    Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants.
    Beddoes J; Bucci K
    J Mater Sci Mater Med; 1999 Jul; 10(7):389-94. PubMed ID: 15348123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Corrosion of 316L Stainless Steel Caused by
    Kalnaowakul P; Xu D; Rodchanarowan A
    ACS Appl Bio Mater; 2020 Apr; 3(4):2185-2192. PubMed ID: 35025270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Ethanol on Pitting Corrosion Behavior of Stainless Steel for Bioethanol Fermentation Tanks.
    Wan Y; Sun Y; Cai D; Yin L; Dai N; Lei L; Jiang Y; Li J
    Front Chem; 2020; 8():529. PubMed ID: 32671020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Iron Valence States Around Pits and the Influence of Fe
    Zhang H; Du N; Wang S; Zhao Q; Zhou W
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H
    Xu W; Yu F; Yang L; Zhang B; Hou B; Li Y
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():11-19. PubMed ID: 30184732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of simulated inflammation on the corrosion of 316L stainless steel.
    Brooks EK; Brooks RP; Ehrensberger MT
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution.
    Zhang H; Huang W; Wei H; Chen Z; Cao J; Tang Y; Zhao X; Zuo Y
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater.
    Wan H; Zhang T; Wang J; Rao Z; Zhang Y; Li G; Gu T; Liu H
    Bioelectrochemistry; 2023 Apr; 150():108367. PubMed ID: 36621048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.
    Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB
    Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces.
    Bijukumar DR; Salunkhe S; Zheng G; Barba M; Hall DJ; Pourzal R; Mathew MT
    Acta Biomater; 2020 Jan; 101():586-597. PubMed ID: 31678260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans.
    Yang C; Wang Q; Ren Y; Jin D; Liu D; Moradi M; Chen X; Li H; Xu D; Wang F
    Bioelectrochemistry; 2021 Dec; 142():107940. PubMed ID: 34492448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.
    Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater.
    Hou R; Lu S; Chen S; Dou W; Liu G
    Bioelectrochemistry; 2023 Feb; 149():108310. PubMed ID: 36283192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment.
    Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Grain Refinement on the Corrosion Resistance of 316L Stainless Steel.
    Ura-Bińczyk E
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.
    Kim KT; Lee JH; Kim YS
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.