These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37663656)

  • 1. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures.
    Zhang J; Li Z; Lin H; Xue M; Wang H; Fang Y; Liu S; Huo T; Zhou H; Yang J; Xie Y; Xie M; Lu L; Liu P; Ye Z
    Front Med (Lausanne); 2023; 10():1224489. PubMed ID: 37663656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a diagnostic support system for distal humerus fracture using artificial intelligence.
    Kekatpure A; Kekatpure A; Deshpande S; Srivastava S
    Int Orthop; 2024 May; 48(5):1303-1311. PubMed ID: 38499714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays.
    Oka K; Shiode R; Yoshii Y; Tanaka H; Iwahashi T; Murase T
    J Orthop Surg Res; 2021 Nov; 16(1):694. PubMed ID: 34823550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons.
    Suzuki T; Maki S; Yamazaki T; Wakita H; Toguchi Y; Horii M; Yamauchi T; Kawamura K; Aramomi M; Sugiyama H; Matsuura Y; Yamashita T; Orita S; Ohtori S
    J Digit Imaging; 2022 Feb; 35(1):39-46. PubMed ID: 34913132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments.
    Gan K; Xu D; Lin Y; Shen Y; Zhang T; Hu K; Zhou K; Bi M; Pan L; Wu W; Liu Y
    Acta Orthop; 2019 Aug; 90(4):394-400. PubMed ID: 30942136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework.
    Min H; Rabi Y; Wadhawan A; Bourgeat P; Dowling J; White J; Tchernegovski A; Formanek B; Schuetz M; Mitchell G; Williamson F; Hacking C; Tetsworth K; Schmutz B
    Phys Eng Sci Med; 2023 Jun; 46(2):877-886. PubMed ID: 37103672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence diagnostic model for multi-site fracture X-ray images of extremities based on deep convolutional neural networks.
    Xie Y; Li X; Chen F; Wen R; Jing Y; Liu C; Wang J
    Quant Imaging Med Surg; 2024 Feb; 14(2):1930-1943. PubMed ID: 38415122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is Deep Learning On Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid?
    Langerhuizen DWG; Bulstra AEJ; Janssen SJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2020 Nov; 478(11):2653-2659. PubMed ID: 32452927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting pediatric wrist fractures using deep-learning-based object detection.
    Zech JR; Carotenuto G; Igbinoba Z; Tran CV; Insley E; Baccarella A; Wong TT
    Pediatr Radiol; 2023 May; 53(6):1125-1134. PubMed ID: 36650360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Distal Radius Fractures Using a Segmentation-Based Deep Learning Model.
    Anttila TT; Karjalainen TV; Mäkelä TO; Waris EM; Lindfors NC; Leminen MM; Ryhänen JO
    J Digit Imaging; 2023 Apr; 36(2):679-687. PubMed ID: 36542269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
    Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T
    JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a deep-learning model for the detection of non-displaced femoral neck fractures with anteroposterior and lateral hip radiographs.
    Wang LX; Zhu ZH; Chen QC; Jiang WB; Wang YZ; Sun NK; Hu BS; Rui G; Wang LS
    Quant Imaging Med Surg; 2024 Jan; 14(1):527-539. PubMed ID: 38223105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size.
    Tobler P; Cyriac J; Kovacs BK; Hofmann V; Sexauer R; Paciolla F; Stieltjes B; Amsler F; Hirschmann A
    Eur Radiol; 2021 Sep; 31(9):6816-6824. PubMed ID: 33742228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice.
    Russe MF; Rebmann P; Tran PH; Kellner E; Reisert M; Bamberg F; Kotter E; Kim S
    BMJ Open; 2024 Jan; 14(1):e076954. PubMed ID: 38262641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Validation of an Artificial Intelligence Model for Detecting Distal Radius, Ulnar Styloid, and Scaphoid Fractures on Conventional Wrist Radiographs.
    Lee KC; Choi IC; Kang CH; Ahn KS; Yoon H; Lee JJ; Kim BH; Shim E
    Diagnostics (Basel); 2023 May; 13(9):. PubMed ID: 37175048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine.
    Chou PH; Jou TH; Wu HH; Yao YC; Lin HH; Chang MC; Wang ST; Lu HH; Chen HH
    Spine J; 2022 Apr; 22(4):511-523. PubMed ID: 34737066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based artificial intelligence model for classification of vertebral compression fractures: A multicenter diagnostic study.
    Xu F; Xiong Y; Ye G; Liang Y; Guo W; Deng Q; Wu L; Jia W; Wu D; Chen S; Liang Z; Zeng X
    Front Endocrinol (Lausanne); 2023; 14():1025749. PubMed ID: 37033240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Dual-Input Convolutional Neural Network for Automated Detection of Pediatric Supracondylar Fracture on Conventional Radiography.
    Choi JW; Cho YJ; Lee S; Lee J; Lee S; Choi YH; Cheon JE; Ha JY
    Invest Radiol; 2020 Feb; 55(2):101-110. PubMed ID: 31725064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis.
    Zhang X; Yang Y; Shen YW; Zhang KR; Jiang ZK; Ma LT; Ding C; Wang BY; Meng Y; Liu H
    Eur Radiol; 2022 Oct; 32(10):7196-7216. PubMed ID: 35754091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs.
    Yamada Y; Maki S; Kishida S; Nagai H; Arima J; Yamakawa N; Iijima Y; Shiko Y; Kawasaki Y; Kotani T; Shiga Y; Inage K; Orita S; Eguchi Y; Takahashi H; Yamashita T; Minami S; Ohtori S
    Acta Orthop; 2020 Dec; 91(6):699-704. PubMed ID: 32783544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.