These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3766445)

  • 1. Validation of a field technique for the measurement of energy expenditure: factorial method versus continuous respirometry.
    Geissler CA; Dzumbira TM; Noor MI
    Am J Clin Nutr; 1986 Nov; 44(5):596-602. PubMed ID: 3766445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric evaluation of the diary-respirometer technique for the field measurement of the 24-hour energy expenditure.
    Brun T; Webb P; de Benoist B; Blackwell F
    Hum Nutr Clin Nutr; 1985 Sep; 39(5):321-34. PubMed ID: 4055423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-budget and easy-to-operate room respirometer for measuring daily energy expenditure in man.
    Dulloo AG; Ismail MN; Ryall M; Melas G; Geissler CA; Miller DS
    Am J Clin Nutr; 1988 Dec; 48(6):1367-74. PubMed ID: 3202086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and cheap respiration chamber for long-term studies of energy expenditure in human beings.
    Gurr MI; Robinson MP; Maltby D
    Proc Nutr Soc; 1979 Sep; 38(2):64A. PubMed ID: 504188
    [No Abstract]   [Full Text] [Related]  

  • 5. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry.
    Ceesay SM; Prentice AM; Day KC; Murgatroyd PR; Goldberg GR; Scott W; Spurr GB
    Br J Nutr; 1989 Mar; 61(2):175-86. PubMed ID: 2706223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous direct gradient layer and indirect room calorimetry.
    Seale JL; Rumpler WV
    J Appl Physiol (1985); 1997 Nov; 83(5):1775-81. PubMed ID: 9375351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A system for measuring energy cost during highly dynamic activities.
    Wilson GD; Sklenka MP
    J Sports Med Phys Fitness; 1983 Jun; 23(2):155-8. PubMed ID: 6632853
    [No Abstract]   [Full Text] [Related]  

  • 9. Indirect calorimetry methods for determination of energy expenditure.
    Dárdai E
    Acta Chir Hung; 1990; 31(1):47-61. PubMed ID: 2122623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile velocity-controlled respirometer: description and performance capabilities.
    Griffith ER; Barber MO; Busse J
    Arch Phys Med Rehabil; 1976 Aug; 57(8):374-81. PubMed ID: 949236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An open-circuit indirect whole body calorimeter for the continuous measurement of energy expenditure of man in the tropics.
    Shetty PS; Sheela ML; Murgatroyd PR; Kurpad AV
    Indian J Med Res; 1987 Apr; 85():453-60. PubMed ID: 3623657
    [No Abstract]   [Full Text] [Related]  

  • 12. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber.
    Ravussin E; Lillioja S; Anderson TE; Christin L; Bogardus C
    J Clin Invest; 1986 Dec; 78(6):1568-78. PubMed ID: 3782471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).
    Meyer CW; Reitmeir P; Tschöp MH
    Curr Protoc Mouse Biol; 2015 Sep; 5(3):205-222. PubMed ID: 26331756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computer-controlled indirect calorimeter for the measurement of energy expenditure in one or two subjects simultaneously.
    Garrow JS; Webster JD
    Hum Nutr Clin Nutr; 1986 Jul; 40(4):315-21. PubMed ID: 3744892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect calorimetry: methodology, instruments and clinical application.
    da Rocha EE; Alves VG; da Fonseca RB
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):247-56. PubMed ID: 16607124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overnight and basal metabolic rates in men and women.
    Goldberg GR; Prentice AM; Davies HL; Murgatroyd PR
    Eur J Clin Nutr; 1988 Feb; 42(2):137-44. PubMed ID: 3378547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total energy expenditure and physical activity measured with the bicarbonate-urea method in patients with human immunodeficiency virus infection.
    Paton NI; Elia M; Jebb SA; Jennings G; Macallan DC; Griffin GE
    Clin Sci (Lond); 1996 Aug; 91(2):241-5. PubMed ID: 8795450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of effect of sleep on energy expenditure and physiologic measures in critically ill burn patients.
    Gottschlich MM; Jenkins M; Mayes T; Khoury J; Kagan R; Warden GD
    J Am Diet Assoc; 1997 Feb; 97(2):131-9. PubMed ID: 9020239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The assessment of total energy expenditure of female farmers under field conditions.
    Brun T
    J Biosoc Sci; 1992 Jul; 24(3):325-33. PubMed ID: 1634561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daily energy expenditure and its main components as measured by whole-body indirect calorimetry in athletic and non-athletic adolescents.
    Ribeyre J; Fellmann N; Montaurier C; Delaître M; Vernet J; Coudert J; Vermorel M
    Br J Nutr; 2000 Apr; 83(4):355-62. PubMed ID: 10858693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.