BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3766445)

  • 21. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intra-individual variability and measurement noise in estimates of energy expenditure by whole body indirect calorimetry.
    Murgatroyd PR; Davies HL; Prentice AM
    Br J Nutr; 1987 Nov; 58(3):347-56. PubMed ID: 3689742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical activity pattern and activity energy expenditure in healthy pregnant and non-pregnant Swedish women.
    Löf M
    Eur J Clin Nutr; 2011 Dec; 65(12):1295-301. PubMed ID: 21792212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of 24-hour energy expenditure from shorter measurement periods in premature infants.
    Bell EF; Rios GR; Wilmoth PK
    Pediatr Res; 1986 Jul; 20(7):646-9. PubMed ID: 3725462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and accurate indirect calorimetry system for assessment of resting energy expenditure.
    Head CA; McManus CB; Seitz S; Grossman GD; Staton GW; Heymsfield SB
    JPEN J Parenter Enteral Nutr; 1984; 8(1):45-8. PubMed ID: 6422072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplified technique for measurements of energy expenditure and substrate oxidation in man.
    Lindmark L; Ekman L; Lundholm K
    Clin Physiol; 1985 Aug; 5(4):337-45. PubMed ID: 4042573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry.
    Spurr GB; Prentice AM; Murgatroyd PR; Goldberg GR; Reina JC; Christman NT
    Am J Clin Nutr; 1988 Sep; 48(3):552-9. PubMed ID: 3414570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N
    Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age and sex effects on energy expenditure.
    Klausen B; Toubro S; Astrup A
    Am J Clin Nutr; 1997 Apr; 65(4):895-907. PubMed ID: 9094870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A validation and comparison study of two metabolic monitors.
    Phang PT; Rich T; Ronco J
    JPEN J Parenter Enteral Nutr; 1990; 14(3):259-61. PubMed ID: 2112638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study.
    Beghin L; Michaud L; Guimber D; Vaksmann G; Turck D; Gottrand F
    Br J Nutr; 2002 Nov; 88(5):533-43. PubMed ID: 12425734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men.
    Seale JL; Rumpler WV; Conway JM; Miles CW
    Am J Clin Nutr; 1990 Jul; 52(1):66-71. PubMed ID: 2193502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The energy expenditure of female carpet weavers and rural women in Iran.
    Geissler CA; Brun TA; Mirbagheri I; Soheli A; Naghibi A; Hedayat H
    Am J Clin Nutr; 1981 Dec; 34(12):2776-83. PubMed ID: 7315779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Postoperative energy requirements following large abdominal surgery interventions: comparison of measuring by indirect calorimetry with estimated values].
    Brandmair W; Lehr L
    Langenbecks Arch Chir; 1989; 374(3):138-45. PubMed ID: 2739483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy balance in man measured by direct and indirect calorimetry.
    Webb P; Annis JF; Troutman SJ
    Am J Clin Nutr; 1980 Jun; 33(6):1287-98. PubMed ID: 7386416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indirect calorimetry: an indispensable tool to understand and predict obesity.
    Lam YY; Ravussin E
    Eur J Clin Nutr; 2017 Mar; 71(3):318-322. PubMed ID: 27848941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition.
    Ławiński M; Singer P; Gradowski Ł; Gradowska A; Bzikowska A; Majewska K
    Nutrition; 2015; 31(11-12):1328-32. PubMed ID: 26278135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy expenditure over 24 hours, thermal comfort and fat-free mass in Asian men.
    Brun T; Webb P; Blackwell F
    Eur J Clin Nutr; 1988 Feb; 42(2):113-20. PubMed ID: 3378544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.