These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37664511)

  • 1. Morphological diversity and altitudinal differentiation of
    Lu W; Shao S; Zu L; Luo X; Duan Y
    Ecol Evol; 2023 Sep; 13(9):e10473. PubMed ID: 37664511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of body morphology and beak shape revealed by a morphometric analysis of 14 Paridae species.
    Shao S; Quan Q; Cai T; Song G; Qu Y; Lei F
    Front Zool; 2016; 13():30. PubMed ID: 27366199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric morphometrics casts light on phylogenetic relevance of cephalopod beak morphological.
    Wang C; Chen X; Fang Z
    J Morphol; 2024 Apr; 285(4):e21691. PubMed ID: 38555512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution.
    Friedman NR; Miller ET; Ball JR; Kasuga H; Remeš V; Economo EP
    Proc Biol Sci; 2019 Dec; 286(1917):20192474. PubMed ID: 31847778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.
    Friedman NR; Harmáčková L; Economo EP; Remeš V
    Evolution; 2017 Aug; 71(8):2120-2129. PubMed ID: 28700095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics.
    Cheng Y; Gao B; Wang H; Han N; Shao S; Wu S; Song G; Zhang YE; Zhu X; Lu X; Qu Y; Lei F
    Front Zool; 2017; 14():58. PubMed ID: 29299037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenetic Variation and Sexual Dimorphism of Beaks among Four Cephalopod Species Based on Geometric Morphometrics.
    Wang C; Fang Z
    Animals (Basel); 2023 Feb; 13(4):. PubMed ID: 36830539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative morphology and soft tissue histology of the remote-touch bill-tip organ in three ibis species of differing foraging ecology.
    du Toit CJ; Chinsamy A; Cunningham SJ
    J Anat; 2022 Oct; 241(4):966-980. PubMed ID: 35938671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae).
    Evans KM; Larouche O; Gartner SM; Faucher RE; Dee SG; Westneat MW
    Evolution; 2023 Sep; 77(9):2000-2014. PubMed ID: 37345732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration.
    Huang ST; Wang HR; Yang WQ; Si YC; Wang YT; Sun ML; Qi X; Bai Y
    PeerJ; 2020; 8():e8567. PubMed ID: 32095371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
    Abzhanov A; Kuo WP; Hartmann C; Grant BR; Grant PR; Tabin CJ
    Nature; 2006 Aug; 442(7102):563-7. PubMed ID: 16885984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altitudinal limits of Eastern Himalayan birds are created by competition past and present.
    Surya GS; Keitt TH
    PLoS One; 2019; 14(7):e0217549. PubMed ID: 31291248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri.
    López-Aguirre C; Hand SJ; Koyabu D; Tu VT; Wilson LAB
    J Anat; 2021 Jun; 238(6):1312-1329. PubMed ID: 33372711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The shapes of bird beaks are highly controlled by nondietary factors.
    Bright JA; Marugán-Lobón J; Cobb SN; Rayfield EJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5352-7. PubMed ID: 27125856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small clades at the periphery of passerine morphological space.
    Ricklefs RE
    Am Nat; 2005 Jun; 165(6):651-9. PubMed ID: 15937745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.
    Maglianesi MA; Böhning-Gaese K; Schleuning M
    J Anim Ecol; 2015 May; 84(3):655-664. PubMed ID: 25400277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oldest Finch-Beaked Birds Reveal Parallel Ecological Radiations in the Earliest Evolution of Passerines.
    Ksepka DT; Grande L; Mayr G
    Curr Biol; 2019 Feb; 29(4):657-663.e1. PubMed ID: 30744971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The homogenization of avian morphological and phylogenetic diversity under the global extinction crisis.
    Hughes EC; Edwards DP; Thomas GH
    Curr Biol; 2022 Sep; 32(17):3830-3837.e3. PubMed ID: 35868322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric Morphometrics and Genetic Diversity Analysis of Chalcidoidea (
    Xi O; Zhang S; Li J; Hu H; Bai M
    Insects; 2024 Jul; 15(7):. PubMed ID: 39057230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing shape variations in an invasive moth are related to sexual dimorphism and altitude.
    Hernández-L N; Barragán AR; Dupas S; Silvain JF; Dangles O
    Bull Entomol Res; 2010 Oct; 100(5):529-41. PubMed ID: 20102659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.