These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37664569)

  • 1. Integrative analysis of the association between circadian rhythm and lupus nephritis.
    Jin M; Teng F; Cao B; Sun Q; Li D
    Clin Kidney J; 2023 Sep; 16(9):1489-1499. PubMed ID: 37664569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative Analysis of m
    Zhao H; Pan S; Duan J; Liu F; Li G; Liu D; Liu Z
    Front Cell Dev Biol; 2021; 9():724837. PubMed ID: 34557492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the tubulointerstitial infiltrating immune cell landscape and immune marker related molecular patterns in lupus nephritis using bioinformatics analysis.
    Zhang L; Zhang M; Chen X; He Y; Chen R; Zhang J; Huang J; Ouyang C; Shi G
    Ann Transl Med; 2020 Dec; 8(23):1596. PubMed ID: 33437795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted Gene Co-expression Network Analysis Reveals Different Immunity but Shared Renal Pathology Between IgA Nephropathy and Lupus Nephritis.
    Jia NY; Liu XZ; Zhang Z; Zhang H
    Front Genet; 2021; 12():634171. PubMed ID: 33854525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis.
    Wang L; Yang Z; Yu H; Lin W; Wu R; Yang H; Yang K
    Front Immunol; 2022; 13():839197. PubMed ID: 36532018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning.
    Wang X; Rao J; Zhang L; Liu X; Zhang Y
    Heliyon; 2024 Mar; 10(6):e27049. PubMed ID: 38509983
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Yang H; Li H
    PeerJ; 2019; 7():e7722. PubMed ID: 31592160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Molecular Markers Associated With the Pathophysiology and Treatment of Lupus Nephritis Based on Integrated Transcriptome Analysis.
    Yao M; Gao C; Zhang C; Di X; Liang W; Sun W; Wang Q; Zheng Z
    Front Genet; 2020; 11():583629. PubMed ID: 33384713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of potential biomarkers for systemic lupus erythematosus by integrated analysis of gene expression and methylation data.
    Zhang W; Liang G; Zhou H; Zeng X; Zhang Z; Xu X; Lai K
    Clin Rheumatol; 2023 May; 42(5):1423-1433. PubMed ID: 36595110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics Analysis of the Core Genes Related to Lupus Nephritis Through a Network and Pathway-Based Approach.
    Sun G; Zhu P; Dai Y; Chen W
    DNA Cell Biol; 2019 Jul; 38(7):639-650. PubMed ID: 31090450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis and clinical correlation analysis of hub genes, immune infiltration, and potential therapeutic agents related to lupus nephritis.
    Lin W; Lin Z; Lin X; Peng Z; Liang X; Wei S
    Lupus; 2023 Apr; 32(5):633-643. PubMed ID: 36912500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic identification of key extracellular proteins as the potential biomarkers in lupus nephritis.
    Zhou X; Zhang Y; Wang N
    Front Immunol; 2022; 13():915784. PubMed ID: 35967373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hub ferroptosis-related genes and immune infiltration in lupus nephritis using bioinformatics.
    Hu W; Chen X
    Sci Rep; 2022 Nov; 12(1):18826. PubMed ID: 36335193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrarenal activation of adaptive immune effectors is associated with tubular damage and impaired renal function in lupus nephritis.
    Pamfil C; Makowska Z; De Groof A; Tilman G; Babaei S; Galant C; Montigny P; Demoulin N; Jadoul M; Aydin S; Lesche R; McDonald F; Houssiau FA; Lauwerys BR
    Ann Rheum Dis; 2018 Dec; 77(12):1782-1789. PubMed ID: 30065042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complement factor B inhibitor LNP023 improves lupus nephritis in MRL/lpr mice.
    Chen K; Deng Y; Shang S; Tang L; Li Q; Bai X; Chen X
    Biomed Pharmacother; 2022 Sep; 153():113433. PubMed ID: 36076550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis.
    Romick-Rosendale LE; Brunner HI; Bennett MR; Mina R; Nelson S; Petri M; Kiani A; Devarajan P; Kennedy MA
    Arthritis Res Ther; 2011; 13(6):R199. PubMed ID: 22152586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrarenal macrophage infiltration induced by T cells is associated with podocyte injury in lupus nephritis patients.
    Ma R; Jiang W; Li Z; Sun Y; Wei Z
    Lupus; 2016 Dec; 25(14):1577-1586. PubMed ID: 27147620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating knowledge of disease-defining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare.
    Lee DJ; Tsai PH; Chen CC; Dai YH
    J Transl Med; 2023 Feb; 21(1):76. PubMed ID: 36737814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-histologic factors discriminating proliferative lupus nephritis from membranous lupus nephritis.
    Kwon OC; Park JH; Park HC; Jung SM; Lee SW; Song JJ; Park YB; Park MC
    Arthritis Res Ther; 2020 Jun; 22(1):138. PubMed ID: 32517774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phoenix from the flames: Rediscovering the role of the CD40-CD40L pathway in systemic lupus erythematosus and lupus nephritis.
    Ramanujam M; Steffgen J; Visvanathan S; Mohan C; Fine JS; Putterman C
    Autoimmun Rev; 2020 Nov; 19(11):102668. PubMed ID: 32942031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.