These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37664730)

  • 1. External-quantum-efficiency enhancement in quantum-dot solar cells with a Fabry-Perot light-trapping structure.
    Oteki Y; Okada Y
    Heliyon; 2023 Aug; 9(8):e19312. PubMed ID: 37664730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical engineering of PbS colloidal quantum dot solar cells via Fabry-Perot resonance and distributed Bragg reflectors.
    Bae S; Duff M; Hong JY; Lee JK
    Nano Converg; 2023 Jul; 10(1):31. PubMed ID: 37402935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.
    Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
    Wu Y; Yan X; Zhang X; Ren X
    Nanoscale Res Lett; 2018 Feb; 13(1):62. PubMed ID: 29476287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting.
    Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB
    Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin-film InAs/GaAs quantum dot solar cell with planar and pyramidal back reflectors.
    Aho T; Elsehrawy F; Tukiainen A; Ranta S; Raappana M; Isoaho R; Aho A; Hietalahti A; Cappelluti F; Guina M
    Appl Opt; 2020 Jul; 59(21):6304-6308. PubMed ID: 32749293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.
    Nozawa T; Takagi H; Watanabe K; Arakawa Y
    Nano Lett; 2015 Jul; 15(7):4483-7. PubMed ID: 26099362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Ultraviolet Responses in Cu
    Jeong WL; Jang J; Kim J; Joo SK; Park MD; Kwak HM; Baik J; Kim HJ; Kim JH; Lee DS
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes.
    Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T
    ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film.
    Cheng DC; Hao HC; Zhang M; Shi W; Lu M
    Nanoscale Res Lett; 2013 Jun; 8(1):291. PubMed ID: 23787125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a 1550-nm InAs/GaAs Quantum Dot Saturable Absorber Mirror with a Short-Period Superlattice Capping Structure Towards Femtosecond Fiber Laser Applications.
    Jiang C; Ning J; Li X; Wang X; Zhang Z
    Nanoscale Res Lett; 2019 Dec; 14(1):362. PubMed ID: 31792621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers.
    Wang Y; Ma B; Li J; Liu Z; Jiang C; Li C; Liu H; Zhang Y; Zhang Y; Wang Q; Xie X; Qiu X; Ren X; Wei X
    Opt Express; 2023 Jan; 31(3):4862-4872. PubMed ID: 36785443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser.
    Wang X; Zhu YJ; Jiang C; Guo YX; Ge XT; Chen HM; Ning JQ; Zheng CC; Peng Y; Li XH; Zhang ZY
    Opt Express; 2019 Jul; 27(15):20649-20658. PubMed ID: 31510154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
    Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
    Kim Y; Bicanic K; Tan H; Ouellette O; Sutherland BR; García de Arquer FP; Jo JW; Liu M; Sun B; Liu M; Hoogland S; Sargent EH
    Nano Lett; 2017 Apr; 17(4):2349-2353. PubMed ID: 28287738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires.
    Yan X; Zhang X; Ren X; Lv X; Li J; Wang Q; Cai S; Huang Y
    Nano Lett; 2012 Apr; 12(4):1851-6. PubMed ID: 22439825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.