BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37665350)

  • 1. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings.
    Seçkin S; Singh P; Jaiswal A; König TAF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.
    Mahmoud MA
    J Chem Phys; 2015 Aug; 143(7):074703. PubMed ID: 26298144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K; Inbaraj BS; Chen BH
    Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss.
    Shen Y; Cheng X; Li G; Zhu Q; Chi Z; Wang J; Jin C
    Nanoscale Horiz; 2016 Jul; 1(4):290-297. PubMed ID: 32260648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances.
    Nair S; Gomez-Cruz J; Ascanio G; Docoslis A; Sabat RG; Escobedo C
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided-mode-resonance-coupled plasmonic-active SiO(2) nanotubes for surface enhanced Raman spectroscopy.
    Xu X; Hasan D; Wang L; Chakravarty S; Chen RT; Fan DL; Wang AX
    Appl Phys Lett; 2012 May; 100(19):191114-1911145. PubMed ID: 22685345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy.
    Charconnet M; Kuttner C; Plou J; García-Pomar JL; Mihi A; Liz-Marzán LM; Seifert A
    Small Methods; 2021 Oct; 5(10):e2100453. PubMed ID: 34927949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma amplifiers: multiscale light-enhanced uniform SERS composite substrates for breaking through resonance limitations.
    Lu J; Yang F; Wang Z; Huang J; Jin S; Liang P
    Phys Chem Chem Phys; 2024 Jun; 26(22):16287-16295. PubMed ID: 38804814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy.
    Jiao S; Liu Y; Wang S; Wang S; Ma F; Yuan H; Zhou H; Zheng G; Zhang Y; Dai K; Liu C
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic gold nanoassembly: a study on polarization-dependent and polarization-selective surface-enhanced Raman scattering.
    Hossain MK; Huang GG; Tanaka Y; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4268-76. PubMed ID: 25572301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.