These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid switching kVp dual energy CT: Value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Mahmood U; Horvat N; Horvat JV; Ryan D; Gao Y; Carollo G; DeOcampo R; Do RK; Katz S; Gerst S; Schmidtlein CR; Dauer L; Erdi Y; Mannelli L Eur J Radiol; 2018 May; 102():102-108. PubMed ID: 29685522 [TBL] [Abstract][Full Text] [Related]
3. Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique. Lee S; Choi YH; Cho YJ; Lee SB; Cheon JE; Kim WS; Ahn CK; Kim JH Eur Radiol; 2021 Apr; 31(4):2218-2226. PubMed ID: 33030573 [TBL] [Abstract][Full Text] [Related]
4. Learning-based synthetic dual energy CT imaging from single energy CT for stopping power ratio calculation in proton radiation therapy. Charyyev S; Wang T; Lei Y; Ghavidel B; Beitler JJ; McDonald M; Curran WJ; Liu T; Zhou J; Yang X Br J Radiol; 2022 Jan; 95(1129):20210644. PubMed ID: 34709948 [TBL] [Abstract][Full Text] [Related]
5. Dual-energy CT Aortography with 50% Reduced Iodine Dose Versus Single-energy CT Aortography with Standard Iodine Dose. Shuman WP; Chan KT; Busey JM; Mitsumori LM; Koprowicz KM Acad Radiol; 2016 May; 23(5):611-8. PubMed ID: 26897602 [TBL] [Abstract][Full Text] [Related]
6. Quantitative accuracy and dose efficiency of dual-contrast imaging using dual-energy CT: a phantom study. Ren L; Rajendran K; McCollough CH; Yu L Med Phys; 2020 Feb; 47(2):441-456. PubMed ID: 31705664 [TBL] [Abstract][Full Text] [Related]
7. Dual-Energy CT Urography With 50% Reduced Iodine Dose Versus Single-Energy CT Urography With Standard Iodine Dose. Shuman WP; Mileto A; Busey JM; Desai N; Koprowicz KM AJR Am J Roentgenol; 2019 Jan; 212(1):117-123. PubMed ID: 30422713 [TBL] [Abstract][Full Text] [Related]
8. CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model. Gao Y; Xie H; Chang CW; Peng J; Pan S; Qiu RLJ; Wang T; Ghavidel B; Roper J; Zhou J; Yang X Med Phys; 2024 Sep; 51(9):6246-6258. PubMed ID: 38889368 [TBL] [Abstract][Full Text] [Related]
9. Synthetic Extracellular Volume Fraction Derived Using Virtual Unenhanced Attenuation of Blood on Contrast-Enhanced Cardiac Dual-Energy CT in Nonischemic Cardiomyopathy. Kim NY; Im DJ; Youn JC; Hong YJ; Choi BW; Kang SM; Lee HJ AJR Am J Roentgenol; 2022 Mar; 218(3):454-461. PubMed ID: 34643105 [No Abstract] [Full Text] [Related]
10. Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Pfeiffer D; Parakh A; Patino M; Kambadakone A; Rummeny EJ; Sahani DV Abdom Radiol (NY); 2018 Dec; 43(12):3317-3323. PubMed ID: 29774382 [TBL] [Abstract][Full Text] [Related]
11. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Sun H; Hou XY; Xue HD; Li XG; Jin ZY; Qian JM; Yu JC; Zhu HD Eur J Radiol; 2015 May; 84(5):884-91. PubMed ID: 25650332 [TBL] [Abstract][Full Text] [Related]
12. Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study. Hanson GJ; Michalak GJ; Childs R; McCollough B; Kurup AN; Hough DM; Frye JM; Fidler JL; Venkatesh SK; Leng S; Yu L; Halaweish AF; Harmsen WS; McCollough CH; Fletcher JG Abdom Radiol (NY); 2018 Jun; 43(6):1404-1412. PubMed ID: 28983661 [TBL] [Abstract][Full Text] [Related]
13. Pseudo low-energy monochromatic imaging of head and neck cancers: Deep learning image reconstruction with dual-energy CT. Koike Y; Ohira S; Teraoka Y; Matsumi A; Imai Y; Akino Y; Miyazaki M; Nakamura S; Konishi K; Tanigawa N; Ogawa K Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1271-1279. PubMed ID: 35415780 [TBL] [Abstract][Full Text] [Related]
14. Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates. Li Y; Li Y; Jackson A; Li X; Huang N; Guo C; Zhang H Abdom Radiol (NY); 2017 Jan; 42(1):312-321. PubMed ID: 27470507 [TBL] [Abstract][Full Text] [Related]
15. Dual-energy CT angiography of abdomen with routine concentration contrast agent in comparison with conventional single-energy CT with high concentration contrast agent. He J; Wang Q; Ma X; Sun Z Eur J Radiol; 2015 Feb; 84(2):221-7. PubMed ID: 25487820 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based virtual noncontrast CT for volumetric modulated arc therapy planning: Comparison with a dual-energy CT-based approach. Koike Y; Ohira S; Akino Y; Sagawa T; Yagi M; Ueda Y; Miyazaki M; Sumida I; Teshima T; Ogawa K Med Phys; 2020 Feb; 47(2):371-379. PubMed ID: 31733105 [TBL] [Abstract][Full Text] [Related]
17. Dual-Energy Computed Tomography: Technological Considerations. Chung R; Dane B; Yeh BM; Morgan DE; Sahani DV; Kambadakone A Radiol Clin North Am; 2023 Nov; 61(6):945-961. PubMed ID: 37758362 [TBL] [Abstract][Full Text] [Related]
18. Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus single-energy CT aortography using standard iodine dose in the same patient. Shuman WP; O'Malley RB; Busey JM; Ramos MM; Koprowicz KM Abdom Radiol (NY); 2017 Mar; 42(3):759-765. PubMed ID: 28084544 [TBL] [Abstract][Full Text] [Related]
19. Comparison of virtual to true unenhanced abdominal computed tomography images acquired using rapid kV-switching dual energy imaging. Popnoe DO; Ng CS; Zhou S; Kaur H; Kang HC; Loyer EM; Kappadath SC; Jones AK PLoS One; 2020; 15(9):e0238582. PubMed ID: 32966278 [TBL] [Abstract][Full Text] [Related]