BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37665391)

  • 1. Achieving imaging and computational reproducibility on multiparametric MRI radiomics features in brain tumor diagnosis: phantom and clinical validation.
    Cheong EN; Park JE; Park SY; Jung SC; Kim HS
    Eur Radiol; 2024 Mar; 34(3):2008-2023. PubMed ID: 37665391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study.
    Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F
    Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI.
    Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B
    J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision of MRI radiomics features in the liver and hepatocellular carcinoma.
    Carbonell G; Kennedy P; Bane O; Kirmani A; El Homsi M; Stocker D; Said D; Mukherjee P; Gevaert O; Lewis S; Hectors S; Taouli B
    Eur Radiol; 2022 Mar; 32(3):2030-2040. PubMed ID: 34564745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma From Glioblastoma: Development and Cross-Vendor Validation.
    Xia W; Hu B; Li H; Geng C; Wu Q; Yang L; Yin B; Gao X; Li Y; Geng D
    J Magn Reson Imaging; 2021 Jan; 53(1):242-250. PubMed ID: 32864825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors.
    Ma X; Gong J; Hu F; Tang W; Gu Y; Peng W
    J Magn Reson Imaging; 2023 Feb; 57(2):633-645. PubMed ID: 35657093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques.
    Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B
    Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors.
    Wang H; Hu D; Yao H; Chen M; Li S; Chen H; Luo J; Feng Y; Guo Y
    Eur Radiol; 2019 Nov; 29(11):6182-6190. PubMed ID: 31016445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation.
    Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS
    Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas.
    Dai M; Liu Y; Hu Y; Li G; Zhang J; Xiao Z; Lv F
    Eur Radiol; 2022 Nov; 32(11):7988-7997. PubMed ID: 35583712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of intra-tumoral vasculature imaging features on susceptibility weighted imaging in differentiating primary central nervous system lymphoma from glioblastoma: a multiparametric comparison with pathological validation.
    Bhattacharjee R; Gupta M; Singh T; Sharma S; Khanna G; Parvaze SP; Patir R; Vaishya S; Ahlawat S; Singh A; Gupta RK
    Neuroradiology; 2022 Sep; 64(9):1801-1818. PubMed ID: 35435463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.