These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37665455)

  • 1. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States.
    Sauer P; Bantscheff M
    Methods Mol Biol; 2023; 2718():73-98. PubMed ID: 37665455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.
    Tu Y; Tan L; Tao H; Li Y; Liu H
    Phytomedicine; 2023 Jul; 116():154862. PubMed ID: 37216761
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Lenz T; Stühler K
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags.
    Zinn N; Werner T; Doce C; Mathieson T; Boecker C; Sweetman G; Fufezan C; Bantscheff M
    J Proteome Res; 2021 Mar; 20(3):1792-1801. PubMed ID: 33621079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Thermal proteome profiling: a technique for a comprehensive assessment of protein status].
    Qiu Y; Zhai B; Bai Y; Chen S; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3628-3637. PubMed ID: 36305398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels.
    Reckzeh ES; Brockmeyer A; Metz M; Waldmann H; Janning P
    Methods Mol Biol; 2019; 1888():73-98. PubMed ID: 30519941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular thermal shift assay: an approach to identify and assess protein target engagement.
    Zhang L; Wang Y; Zheng C; Zhou Z; Chen Z
    Expert Rev Proteomics; 2024; 21(9-10):387-400. PubMed ID: 39317941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry.
    Franken H; Mathieson T; Childs D; Sweetman GM; Werner T; Tögel I; Doce C; Gade S; Bantscheff M; Drewes G; Reinhard FB; Huber W; Savitski MM
    Nat Protoc; 2015 Oct; 10(10):1567-93. PubMed ID: 26379230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal proteome profiling: Insights into protein modifications, associations, and functions.
    Le Sueur C; Hammarén HM; Sridharan S; Savitski MM
    Curr Opin Chem Biol; 2022 Dec; 71():102225. PubMed ID: 36368297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes.
    Peck Justice SA; McCracken NA; Victorino JF; Qi GD; Wijeratne AB; Mosley AL
    Anal Chem; 2021 May; 93(18):7000-7010. PubMed ID: 33908254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling.
    George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME
    J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved drug target deconvolution with PISA-DIA using an extended, overlapping temperature gradient.
    Emery-Corbin SJ; Yousef JM; Adhikari S; Sumardy F; Nhu D; van Delft MF; Lessene G; Dziekan J; Webb AI; Dagley LF
    Proteomics; 2024 Aug; 24(16):e2300644. PubMed ID: 38766901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaled-Down Thermal Profiling and Coaggregation Analysis of the Proteome for Drug Target and Protein Interaction Analysis.
    Lu X; Liao B; Sun S; Mao Y; Wu Q; Tian R; Tan CSH
    Anal Chem; 2023 Sep; 95(37):13844-13854. PubMed ID: 37656141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method.
    Fedorov II; Bubis JA; Kazakova EM; Lobas AA; Ivanov MV; Emekeeva DD; Tarasova IA; Nazarov AA; Gorshkov MV
    Anal Bioanal Chem; 2024 Jul; 416(18):4083-4089. PubMed ID: 38744720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Target Identification in Tissues by Thermal Proteome Profiling.
    Mateus A; Kurzawa N; Perrin J; Bergamini G; Savitski MM
    Annu Rev Pharmacol Toxicol; 2022 Jan; 62():465-482. PubMed ID: 34499524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflect: Optimizing Computational Workflows for Thermal Proteome Profiling Data Analysis.
    McCracken NA; Peck Justice SA; Wijeratne AB; Mosley AL
    J Proteome Res; 2021 Apr; 20(4):1874-1888. PubMed ID: 33660510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite
    Herneisen AL; Lourido S
    Bio Protoc; 2021 Nov; 11(21):e4207. PubMed ID: 34859122
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterizing Drug-Target Interactions: Shifting towards the Clinic.
    Schirle M
    Trends Pharmacol Sci; 2020 May; 41(5):295-297. PubMed ID: 32192756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Advances in CETSA.
    Tolvanen TA
    Front Mol Biosci; 2022; 9():866764. PubMed ID: 35755818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal proteome profiling for interrogating protein interactions.
    Mateus A; Kurzawa N; Becher I; Sridharan S; Helm D; Stein F; Typas A; Savitski MM
    Mol Syst Biol; 2020 Mar; 16(3):e9232. PubMed ID: 32133759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.